【題目】如圖,在△ABC中,AB=AC=5,AB邊上的高CD=4,點(diǎn)P從點(diǎn)A出發(fā),沿AB以每秒3個(gè)單位長度的速度向終點(diǎn)B運(yùn)動,當(dāng)點(diǎn)P不與點(diǎn)A、B重合時(shí),過點(diǎn)P作PQ⊥AB,交邊AC或邊BC于點(diǎn)Q,以PQ為邊向右側(cè)作正方形PQMN.設(shè)正方形PQMN與△ABC重疊部分圖形的面積為S(平方單位),點(diǎn)P運(yùn)動的時(shí)間為t(秒).
(1)直接寫出tanB的值為 .
(2)求點(diǎn)M落在邊BC上時(shí)t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分為四邊形時(shí),求S與t之間的函數(shù)關(guān)系式.
(4)邊BC將正方形PQMN的面積分為1:3兩部分時(shí),直接寫出t的值.
【答案】(1)2; (2);(3)s=.(4) s.
【解析】試題分析:(1)利用三角函數(shù)定義求tanB的值.(2) 當(dāng)點(diǎn)M落在BC邊上時(shí),由題意得:AP=3t,利用tan∠CAB=求t的值.(3) ①當(dāng)0<t≤時(shí),如圖1,正方形PQMN與△ABC重疊部分是正方形PQMN,②當(dāng)N與B重合時(shí),當(dāng)<t<時(shí),如圖3,正方形PQMN與△ABC重疊部分是五邊形EQPNF,③當(dāng)≤t<1時(shí),如圖4,正方形PQMN與△ABC重疊部分是梯形EQPB,S與t之間的函數(shù).(4) QG=GM, t=s或1s時(shí),邊BC將正方形PQMN的面積分為1:3兩部分.
試題解析:
解:(1)∵CD⊥AB,
∴∠ADC=∠ADB=90°,
∵在Rt△ACD中,AD==3,
∴BD=AB﹣AD=5﹣3=2,
∴在Rt△BCD中,tan∠B===2;
故答案為2.
(2)當(dāng)點(diǎn)M落在BC邊上時(shí),如圖1,
由題意得:AP=3t,
tan∠CAB=,
∴PQ=PN=MN=4t,BN=2t,
∴3t+4t+2t=5,
t=.
(3)分三種情況:
①當(dāng)0<t≤時(shí),如圖1,正方形PQMN與△ABC重疊部分是正方形PQMN,
∴S=PQ2=(4t)2=16t2;
②當(dāng)N與B重合時(shí),如圖2,
AP=3t,PQ=PB=4t,
∴3t+4t=5,
t=,
當(dāng)<t<時(shí),如圖3,正方形PQMN與△ABC重疊部分是五邊形EQPNF,
③當(dāng)≤t<1時(shí),如圖4,正方形PQMN與△ABC重疊部分是梯形EQPB,
∴AP=3t,PN=4t,
∴BN=7t﹣5,PB=4t﹣(7t﹣5)=﹣3t+5,
在Rt△APQ中,AQ=5t,
∴QC=5﹣5t,
∵AC=AB,
∴∠ACB=∠ABC,
∵QE∥AB,
∴∠QEC=∠ABC,
∴∠QEC=∠ACB,
∴QE=QC=5﹣5t,
∴S=S梯形QPBE=(QE+PB)×PQ,
=(5﹣5t+5﹣3t)×4t=﹣16t2+20t;
綜上所述,S與t之間的函數(shù)關(guān)系式為:
S=.
(4)如圖2,當(dāng)t=時(shí),CQ=QG=5﹣5t=,
∴GM=4t﹣=,
∴QG=GM,
∴S△QGB=S△GMB,
∴S梯形GQPB:S△GMB=3:1,
當(dāng)P與D重合時(shí),t=1,如圖5,
則S△CDB:S四邊形CBNM=×2×4:(42﹣×2×4),
=1:3,
綜上所述,t=s或1s時(shí),邊BC將正方形PQMN的面積分為1:3兩部分.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖中,點(diǎn)A,B,C,P,Q,R顯示了6名學(xué)生平均每周用于閱讀課外書的時(shí)間和用于看電視的時(shí)間(單位:h)
(1)用有序數(shù)對表示圖中點(diǎn)A,B,C,P,Q,R
(2)圖中方格紙的對角線的左上方的點(diǎn)有什么共同的特點(diǎn)?它右下方的點(diǎn)呢?
(3)三角形ABC的圖形經(jīng)過怎樣的變換后得到三角形PQR的圖形?其中點(diǎn)A對應(yīng)點(diǎn)P,點(diǎn)B對應(yīng)點(diǎn)Q,點(diǎn)C對應(yīng)點(diǎn)R
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)的圖像與性質(zhì)進(jìn)行了探究.請補(bǔ)充完整:
(1)先填表,再在如圖所示的平面直角坐標(biāo)系中,描全表中各對對應(yīng)值為坐標(biāo)的點(diǎn),并畫出該函數(shù)的圖像:
x | … | -5 | -4 | -3 | -2 | 0 | 1 | 2 | 3 | … |
… | 2 | 3 | -3 | 0 | … |
(2)結(jié)合函數(shù)的圖像,說出兩條不同類型的性質(zhì);
①________________________________;____________________________________.
②的圖像是由的圖像如何平移得到?
___________________________________________.
(3)當(dāng)函數(shù)值時(shí),x的取值范圍是____________span>.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,每一個(gè)小方格的邊個(gè)長為1個(gè)單位.
(1)請寫出△ABC各點(diǎn)的坐標(biāo);
(2)若把△ABC向上平移2個(gè)單位,再向右平移2個(gè)單位得到△A1B1C1,在圖中畫出△A1B1C1;
(3)求△A1B1C1的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】吉林省廣播電視塔(簡稱“吉塔”)是我省目前最高的人工建筑,也是俯瞰長春市美景的最佳去處.某科技興趣小組利用無人機(jī)搭載測量儀器測量“吉塔”的高度.已知如圖將無人機(jī)置于距離“吉塔”水平距離138米的點(diǎn)C處,則從無人機(jī)上觀測塔尖的仰角恰為30°,觀測塔基座中心點(diǎn)的俯角恰為45°.求“吉塔”的高度.(注: ≈1.73,結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=﹣x2+bx+c(其中b,c為常數(shù))的圖象經(jīng)過點(diǎn)A(3,1),點(diǎn)C(0,4),頂點(diǎn)為點(diǎn)M,過點(diǎn)A作AB∥x軸,交y軸于點(diǎn)D,交該二次函數(shù)圖象于點(diǎn)B,連結(jié)BC.
(1)求該二次函數(shù)的解析式及點(diǎn)M的坐標(biāo).
(2)若將該二次函數(shù)圖象向下平移m(m>0)個(gè)單位,使平移后得到的二次函數(shù)圖象的頂點(diǎn)落在△ABC的內(nèi)部(不包括△ABC的邊界),求m的取值范圍.
(3)沿直線AC方向平移該二次函數(shù)圖象,使得CM與平移前的CB相等,求平移后點(diǎn)M的坐標(biāo).
(4)點(diǎn)P是直線AC上的動點(diǎn),過點(diǎn)P作直線AC的垂線PQ,記點(diǎn)M關(guān)于直線PQ的對稱點(diǎn)為M′.當(dāng)以點(diǎn)P、A、M、M′為頂點(diǎn)的四邊形為平行四邊形時(shí),直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在正方形ABCD中,F是CD邊上一點(diǎn)(不與C、D重合),過點(diǎn)D作DG⊥BF交BF延長線于點(diǎn)G.連接AG,交BD于點(diǎn)E,交CD于點(diǎn)M,連接EF.若DG=4,AG=,則EF的長為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知方程:x﹣2x﹣8=0,解決一下問題:
(1)不解方程判斷此方程的根的情況;
(2)請按要求分別解這個(gè)方程:①配方法;②因式分解法.
(3)這些方法都是將解 轉(zhuǎn)化為解 ;
(4)嘗試解方程:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CD⊥AB于點(diǎn)D,CE是∠ACB的平分線,∠A=20°,∠B=60°,求∠BCD和∠ECD的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com