【題目】已知拋物線y1=ax2+bx+c(a≠0,a≠c)過點A(1,0),頂點為 B,且拋物線不過第三象限.

(1)過點B作直線l垂直于x軸于點C,若點C坐標(biāo)為(2,0),a=1,求b和c的值;

(2)比較與0的大小,并說明理由;

(3)若直線y2=2x+m經(jīng)過點B,且與拋物線交于另外一點D(,b+8),求當(dāng)≤x<5時y1的取值范圍.

【答案】(1)b=﹣4,c=3;(2)<0;(3)>y1≥﹣2

【解析】

拋物線y1=ax2+bx+c(a≠0,a≠c),經(jīng)過A(1,0),拋物線不過第三象限,則a>0,把點A坐標(biāo)代入函數(shù),即可得到:b=-a-c;

(1)由題意得:函數(shù)對稱軸是x=2=,而a=1、b=-a-c,解得:b=-4,c=3;

(2)由拋物線開口向上,且過點A,知:頂點在x軸下方,即:<0;

(3)由韋達定理得:x2=,而D坐標(biāo)是(,b+8),故:b+8=0,即b=-8,求函數(shù)表達式即可求解.

解:∵拋物線 y1=ax2+bx+c(a≠0,a≠c),經(jīng)過 A(1,0),拋物線不過第三象限,則 a>0,

把點代入函數(shù)即可得到:b=﹣a﹣c;

由題意得:函數(shù)對稱軸是 x=2=,而 a=1、b=﹣a﹣c, 解得:b=﹣4,c=3;

由拋物線開口向上,且過點 A,知:頂點在 x 軸下方, 即:<0;

由韋達定理得:

x1+x2= ,x1x2=

其中 x1=1,則 x2=,而 D 坐標(biāo)是(,b+8),故:b+8=0,即 b=﹣8,

a+c=﹣b,a+c=8…

B、C 兩點代入直線解析式易得:c﹣a=4…, 聯(lián)立①、②并求解得:a=2,c=6

函數(shù)表達式為:y=2x2﹣8x+6,

A、B、C 點的坐標(biāo)分別為(1,0)、(2,﹣2)、(3,0).

當(dāng)≤x<5 時,y1 的取值范圍為:>y1≥﹣2,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若二次函數(shù)yx26x+c的圖象過A(﹣1,y1),B2,y2),C3,y3),則y1、y2、y3的大小關(guān)系是( 。

A. y1y2y3 B. y1y3y2 C. y2y1y3 D. y3y1y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AB=AC,以AB為直徑的OBC相交于點D,與CA的延長線相交于點E,過點DDFAC于點F

1)試說明DFO的切線;

2)若AC=3AE,求tanC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點D是∠AOB的平分線OC上任意一點,過DDEOBE,以DE為半徑作⊙D

①判斷⊙DOA的位置關(guān)系, 并證明你的結(jié)論。

②通過上述證明,你還能得出哪些等量關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的二次方程.

1)若,且此方程有一個根為,求的值;

2)若,判斷此方程根的情況.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB為⊙O的直徑,點C為半圓ACB上的動點(不與A、B兩點重合),過點C作弦CD⊥AB,∠OCD的平分線交圓于點P,則點P的位置有何規(guī)律?請證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的一元二次方程

1)若此方程的一個根為1,求的值;

2)求證:不論取何實數(shù),此方程都有兩個不相等的實數(shù)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果方程x2+px+q=0有兩個實數(shù)根x1, x2,那么x1+x2=﹣p,x1x2=q,請根據(jù)以上結(jié)論,解決下列問題:

(1)已知a、b是方程x2+15x+5=0的二根,則=?

(2)已知a、b、c滿足a+b+c=0,abc=16,求正數(shù)c的最小值.

(3)結(jié)合二元一次方程組的相關(guān)知識,解決問題:已知是關(guān)于x,y的方程組的兩個不相等的實數(shù)解.問:是否存在實數(shù)k,使得y1y2=2?若存在,求出的k值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(3分)如圖,在矩形ABCD中,BC=AB,ADC的平分線交邊BC于點E,AHDE于點H,連接CH并延長交邊AB于點F,連接AE交CF于點O.給出下列命題:

①∠AEB=AEH;DH=EH;HO=AE;BC﹣BF=EH.

其中正確命題的序號是 (填上所有正確命題的序號).

查看答案和解析>>

同步練習(xí)冊答案