【題目】已知關(guān)于的一元二次方程

1)若此方程的一個根為1,求的值;

2)求證:不論取何實數(shù),此方程都有兩個不相等的實數(shù)根.

【答案】1m=2證明見解析

【解析】試題分析:一元二次方程ax2+bx+c=0a≠0)的根的判別式△=b2﹣4ac:當0,方程有兩個不相等的實數(shù)根;當△=0,方程有兩個相等的實數(shù)根;當0,方程沒有實數(shù)根.

1)直接把x=1代入方程x2+mx+m﹣2=0求出m的值;

2)計算出根的判別式,進一步利用配方法和非負數(shù)的性質(zhì)證得結(jié)論即可.

解:(1)根據(jù)題意,將x=1代入方程x2+mx+m﹣2=0,

得:1+m+m﹣2=0,

解得:m=

2∵△=m2﹣4×1×m﹣2=m2﹣4m+8=m﹣22+40,

不論m取何實數(shù),該方程都有兩個不相等的實數(shù)根.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】李老師做了個長方形教具,其中一邊長為2a+b,另一邊長為a﹣b,則該長方形的面積為( 。
A.6a+b
B.2a2﹣ab﹣b2
C.3a
D.10a﹣b

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在等邊△ABC中,點D,E分別在邊BC,AC上,且DE∥AB,過點EEF⊥DE,交BC的延長線于點F

1)求∠F的大;

2)若CD=3,求DF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c為x軸的一交點為A(﹣6,0),與y軸的交點為C(0,3),且經(jīng)過點G(﹣2,3).

(1)求拋物線的表達式.

(2)點P是線段OA上一動點,過P作平行于y軸的直線與AC交于點Q,設(shè)△CPQ的面積為S,求S的最大值.

(3)若點B是拋物線與x軸的另一定點,點D、M在線段AB上,點N在線段AC上,∠DCB=∠CDB,CD是MN的垂直平分線,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請你閱讀下列計算過程,再回答所提出的問題:

題目計算

解:原式= (A)

= (B)

=x-3-3(x+1) (C)

=-2x-6 (D)

(1)上述計算過程中,從哪一步開始出現(xiàn)錯誤:_______________

(2)如果假設(shè)基于之前步驟正確的前提下,從B到C是否正確,若不正確,錯誤的原因是____________________________________________________

(3)請你正確解答。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】P在第二象限,Px軸的距離是2,到y軸的距離是3,P的坐標為___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小林發(fā)現(xiàn)班里同學出黑板報的時候,同學們先是在黑板兩邊劃出兩個點、再用毛線彈上一條粉筆線,然后再往上面寫字,你知道這是為什么嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,BC=2,點E為AD中點,點F為BC邊上任一點,過點F分別作EB,EC的垂線,垂足分別為點G,H,則FG+FH為( ).

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個等腰三角形的兩邊長分別為52,則這個三角形的周長為_____

查看答案和解析>>

同步練習冊答案