【題目】如圖,已知AB為⊙O的直徑,點C為半圓ACB上的動點(不與A、B兩點重合),過點C作弦CD⊥AB,∠OCD的平分線交圓于點P,則點P的位置有何規(guī)律?請證明你的結論.
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=-x2+bx+c的圖像經(jīng)過點(0,3)、(-1,0).
(1)求二次函數(shù)的表達式;
(2)在給定的平面直角坐標系中,畫出這個二次函數(shù)的圖像;
(3)根據(jù)圖像,直接寫出當x滿足什么條件時,y>0.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為一圓洞門.工匠在建造過程中需要一根橫梁AB和兩根對稱的立柱CE、DF來支撐,點A、B、C、D在⊙O上,CE⊥AB于E,DF⊥AB于F,且AB=2,EF=,=120°.
(1)求出圓洞門⊙O的半徑;
(2)求立柱CE的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+4 經(jīng)過點A(﹣3,0),點 B 在拋物線上,CB∥x軸,且AB 平分∠CAO.則此拋物線的解析式是___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y1=ax2+bx+c(a≠0,a≠c)過點A(1,0),頂點為 B,且拋物線不過第三象限.
(1)過點B作直線l垂直于x軸于點C,若點C坐標為(2,0),a=1,求b和c的值;
(2)比較與0的大小,并說明理由;
(3)若直線y2=2x+m經(jīng)過點B,且與拋物線交于另外一點D(,b+8),求當≤x<5時y1的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OABC的兩邊OA,OC分別在x軸和y軸上,并且OA=5,OC=3.若把矩形OABC繞著點O逆時針旋轉,使點A恰好落在BC邊上的A1處,則點C的對應點C1的坐標為( 。
A. (﹣) B. (﹣) C. (﹣) D. (﹣)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線,與和分別相切于點和點.點和點分別是和上的動點,沿和平移.的半徑為,.下列結論錯誤的是( )
A. B. 和的距離為
C. 若,則與相切 D. 若與相切,則
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知線段AB,P1是AB的黃金分割點(AP1>BP1),點O是AB的中點,P2是P1關于點O的對稱點.求證:P1B是P2B和P1P2的比例中項.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】【提出問題】
(1)如圖1,在等邊△ABC中,點M是BC上的任意一點(不含端點B、C),連結AM,以AM為邊作等邊△AMN,連結CN.求證:∠ABC=∠ACN.
【類比探究】
(2)如圖2,在等邊△ABC中,點M是BC延長線上的任意一點(不含端點C),其它條件不變,(1)中結論∠ABC=∠ACN還成立嗎?請說明理由.
【拓展延伸】
(3)如圖3,在等腰△ABC中,BA=BC,點M是BC上的任意一點(不含端點B、C),連結AM,以AM為邊作等腰△AMN,使頂角∠AMN=∠ABC.連結CN.試探究∠ABC與∠ACN的數(shù)量關系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com