【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx﹣3(a≠0)與x軸交于點(diǎn)A(﹣2,0)、B(4,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)點(diǎn)P從A點(diǎn)出發(fā),在線段AB上以每秒3個(gè)單位長(zhǎng)度的速度向B點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)Q從B點(diǎn)出發(fā),在線段BC上以每秒1個(gè)單位長(zhǎng)度的速度向C點(diǎn)運(yùn)動(dòng),其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也停止運(yùn)動(dòng),當(dāng)△PBQ存在時(shí),求運(yùn)動(dòng)多少秒使△PBQ的面積最大,最大面積是多少?
(3)當(dāng)△PBQ的面積最大時(shí),在BC下方的拋物線上存在點(diǎn)K,使S△CBK:S△PBQ=5:2,求K點(diǎn)坐標(biāo).
【答案】
(1)解:把點(diǎn)A(﹣2,0)、B(4,0)分別代入y=ax2+bx﹣3(a≠0),得
,
解得 ,
所以該拋物線的解析式為:y= x2﹣ x﹣3;
(2)解:設(shè)運(yùn)動(dòng)時(shí)間為t秒,則AP=3t,BQ=t.
∴PB=6﹣3t.
由題意得,點(diǎn)C的坐標(biāo)為(0,﹣3).
在Rt△BOC中,BC= =5.
如圖1,過點(diǎn)Q作QH⊥AB于點(diǎn)H.
∴QH∥CO,
∴△BHQ∽△BOC,
∴ = ,即 = ,
∴HQ= t.
∴S△PBQ= PBHQ= (6﹣3t) t=﹣ t2+ t=﹣ (t﹣1)2+ .
當(dāng)△PBQ存在時(shí),0<t<2
∴當(dāng)t=1時(shí),
S△PBQ最大= .
答:運(yùn)動(dòng)1秒使△PBQ的面積最大,最大面積是 ;
(3)解:設(shè)直線BC的解析式為y=kx+c(k≠0).
把B(4,0),C(0,﹣3)代入,得
,
解得 ,
∴直線BC的解析式為y= x﹣3.
∵點(diǎn)K在拋物線上.
∴設(shè)點(diǎn)K的坐標(biāo)為(m, m2﹣ m﹣3).
如圖2,過點(diǎn)K作KE∥y軸,交BC于點(diǎn)E.則點(diǎn)E的坐標(biāo)為(m, m﹣3).
∴EK= m﹣3﹣( m2﹣ m﹣3)=﹣ m2+ m.
當(dāng)△PBQ的面積最大時(shí),∵S△CBK:S△PBQ=5:2,S△PBQ= .
∴S△CBK= .
S△CBK=S△CEK+S△BEK= EKm+ EK(4﹣m)
= ×4EK
=2(﹣ m2+ m)
=﹣ m2+3m.
即:﹣ m2+3m= .
解得 m1=1,m2=3.
∴K1(1,﹣ ),K2(3,﹣ ).
【解析】方法二:(1)略.(2)設(shè)運(yùn)動(dòng)時(shí)間為t秒,則AP=3t,BQ=t,PB=6﹣3t,
∴點(diǎn)C的坐標(biāo)為(0,﹣3),
∵B(4,0),∴l(xiāng)BC:y= x﹣3,
過點(diǎn)Q作QH⊥AB于點(diǎn)H,
∴tan∠HBQ= ,∴sin∠HBQ= ,
∵BQ=t,∴HQ= t,
∴S△PBQ= PBHQ= =﹣ ,
∴當(dāng)t=1時(shí),S△PBQ最大= .
⑶過點(diǎn)K作KE⊥x軸交BC于點(diǎn)E,
∵S△CBK:S△PBQ=5:2,S△PBQ= ,
∴S△CBK= ,
設(shè)E(m, m﹣3),K(m, ),
S△CBK= = =﹣ ,
∴﹣ = ,
∴m1=1,m2=3,
∴K1(1,﹣ ),K2(3,﹣ ).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AC=BD,E、F、G、H分別是AB、BC、CD、DA的中點(diǎn),且EG、FH交于點(diǎn)O.若AC=4,則EG2+FH2=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖AB是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),AE和過點(diǎn)C的切線互相垂直,垂足為E,AE交⊙O于點(diǎn)D,直線EC交AB的延長(zhǎng)線于點(diǎn)P,連接AC,BC,PC=2PB.
(1)探究線段PB,AB之間的數(shù)量關(guān)系,并說明理由;
(2)若AD=3,求AB長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l1:y=x與直線l2交點(diǎn)A的橫坐標(biāo)為2,將直線l1沿y軸向下平移4個(gè)單位長(zhǎng)度,得到直線l3,直線l3與y軸交于點(diǎn)B,與直線l2交于點(diǎn)C,點(diǎn)C的縱坐標(biāo)為-2.直線l2與y軸交于點(diǎn)D.
(1)求直線l2的解析式;
(2)求△BDC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的高,BE平分∠ABC交AC邊于E,兩線相交于F點(diǎn).
(1)若∠BAC=60°,∠C=70°,求∠AFB的大;
(2)若D是BC的中點(diǎn),∠ABE=30°,求證:△ABC是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一副撲克牌中的三張黑桃牌(它們的正面數(shù)字分別為3、4、5)洗勻后正面朝下放在桌面上.小王和小李玩摸牌游戲,游戲規(guī)則如下:先由小王隨機(jī)抽取一張牌,記下牌面數(shù)字后放回,洗勻后正面朝下,再由小李隨機(jī)抽取一張牌,記下牌面數(shù)字.當(dāng)兩張牌的牌面數(shù)字相同時(shí),小王贏;當(dāng)兩張牌的牌面數(shù)字不同時(shí),小李贏.現(xiàn)請(qǐng)你分析游戲規(guī)則對(duì)雙方是否公平,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知, 四邊形, 連接,,.
(1)如圖, 求證:平分;
(2)如圖,點(diǎn)在的延長(zhǎng)線上,連接交于點(diǎn),求證:;
(3)如圖3,在的條件下,連接,點(diǎn)在延長(zhǎng)線上,連接,延長(zhǎng)與延長(zhǎng)線交于點(diǎn), 若,, 的面積與的面積比為, ,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合題
(1)如圖1,銳角△ABC中,AD⊥BC于D,BE⊥AC于E,AD與BE交于F,連DE,求證:DFDA=DBDC;
(2)如圖2,若∠BAC=90°,AD⊥BC于D,F(xiàn)為線段AD上一點(diǎn),在AD延長(zhǎng)線上找一點(diǎn)G使AD2=DFDG,請(qǐng)畫出圖形找出點(diǎn)G并加以證明;
(3)如圖3,在(1)的條件下,若∠ABC=45°,EF=1,EC=3,直接寫出BD長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com