【題目】如圖,在△ABC中,AD是BC邊上的高,BE平分∠ABC交AC邊于E,兩線相交于F點(diǎn).

(1)若∠BAC=60°,∠C=70°,求∠AFB的大;

(2)若D是BC的中點(diǎn),∠ABE=30°,求證:△ABC是等邊三角形.

【答案】(1)115°;(2)證明見解析

【解析】

(1)根據(jù)∠ABF=FBD+BDF,想辦法求出∠FBD,BDF即可;

(2)只要證明AB=AC,ABC=60°即可;

(1)∵∠BAC=60°,C=70°,

∴∠ABC=180°﹣60°﹣70°=50°,

BE平分∠ABC,

∴∠FBD=ABC=25°,

ADBC,

∴∠BDF=90°,

∴∠AFB=FBD+BDF=115°.

(2)證明:∵∠ABE=30°,BE平分∠ABC,

∴∠ABC=60°,

BD=DC,ADBC,

AB=AC,

∴△ABC是等邊三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某運(yùn)動品牌對第一季度甲、乙兩款運(yùn)動鞋的銷售情況進(jìn)行統(tǒng)計(jì),兩款運(yùn)動鞋的銷售量及總銷售額如圖所示,已知一月份乙款運(yùn)動鞋的銷售量是甲款的,第一季度這兩款運(yùn)動鞋的銷售單價保持不變(銷售額=銷售單價×銷售量)

1)求一月份乙款運(yùn)動鞋的銷售量.

2)求兩款運(yùn)動鞋的銷售單價(單位:元)

3)請補(bǔ)全兩個統(tǒng)計(jì)圖.

4)結(jié)合第一季度的銷售情況,請你對這兩款運(yùn)動鞋的進(jìn)貨,銷售等方面提出一條建議.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長為4的正方形紙片ABCD折疊,使得點(diǎn)A落在邊CD的中點(diǎn)E處,折痕為FG,點(diǎn)F、G分別在邊ADBC上,則折痕FG的長度為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,等邊三角形ABC放置在平面直角坐標(biāo)系中,已知A(0,0)、B(6,0),反比例函數(shù)的圖象經(jīng)過點(diǎn)C.

(1)求點(diǎn)C的坐標(biāo)及反比例函數(shù)的解析式.
(2)將等邊△ABC向上平移n個單位,使點(diǎn)B恰好落在雙曲線上,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,CA=CB,在△AED中,DA=DE,點(diǎn)D,E分別在CA,AB上.
(1)如圖①,若∠ACB=∠ADE=90°,則CD與BE的數(shù)量關(guān)系是;

(2)若∠ACB=∠ADE=120°,將△AED繞點(diǎn)A旋轉(zhuǎn)至如圖②所示的位置,則CD與BE的數(shù)量關(guān)系是;,

(3)若∠ACB=∠ADE=2α(0°<α<90°),將△AED繞點(diǎn)A旋轉(zhuǎn)至如圖③所示的位置,探究線段CD與BE的數(shù)量關(guān)系,并加以證明(用含α的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx﹣3(a≠0)與x軸交于點(diǎn)A(﹣2,0)、B(4,0)兩點(diǎn),與y軸交于點(diǎn)C.

(1)求拋物線的解析式;
(2)點(diǎn)P從A點(diǎn)出發(fā),在線段AB上以每秒3個單位長度的速度向B點(diǎn)運(yùn)動,同時點(diǎn)Q從B點(diǎn)出發(fā),在線段BC上以每秒1個單位長度的速度向C點(diǎn)運(yùn)動,其中一個點(diǎn)到達(dá)終點(diǎn)時,另一個點(diǎn)也停止運(yùn)動,當(dāng)△PBQ存在時,求運(yùn)動多少秒使△PBQ的面積最大,最大面積是多少?
(3)當(dāng)△PBQ的面積最大時,在BC下方的拋物線上存在點(diǎn)K,使SCBK:SPBQ=5:2,求K點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 的中線,,分別是延長線上的點(diǎn),且,連結(jié),.下列說法:①;②面積相等;③;④.其中正確的有(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲騎自行車、乙騎摩托車沿相同路線由A地到B地,行駛過程中路程與時間關(guān)系的圖像如圖所示.根據(jù)圖像解答下列問題:

(1)誰先出發(fā)?先出發(fā)多少時間?誰先到達(dá)終點(diǎn)?先到多少時間?

(2)分別求出甲、乙兩人的行駛速度;

(3)在什么時間段內(nèi),兩人均行駛在途中?(不包括起點(diǎn)和終點(diǎn))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知1輛甲型客車和1輛乙型客車共可載客75人.已知1輛甲型客車和2輛乙型客車共可載客105人.某學(xué)校計(jì)劃租用兩種型號客車送234名學(xué)生和6名老師集體外出活動.從安全角度考慮每輛車上至少要有1名老師,并且總費(fèi)用不超過2280元.
(1)求每輛甲型客車和每輛乙型客車分別可載多少人?
(2)共需租輛客車?
(3)若每輛甲型客車和每輛乙型客車的租金分別為400元和280元,設(shè)租甲型客車x輛,總費(fèi)用為W元,請你給出最節(jié)省的租車方案.

查看答案和解析>>

同步練習(xí)冊答案