【題目】如圖,是的直徑,,,以為邊作圓的內(nèi)接正多邊形,則這個(gè)正多邊形是( )
A. 正七邊形 B. 正八邊形
C. 正六邊形 D. 正十邊形
【答案】C
【解析】
根據(jù)圓周角定理求得∠POQ=100°,由等腰三角形的性質(zhì)得出∠OPQ=∠OQP,再由外角的性質(zhì)得出∠A+∠APO=∠POM=20°+40°=60°,即可得出△POM是等邊三角形,再由正六邊形的性質(zhì)得出答案.
連接QO,PO,如圖所示,
∵QO=PO,
∴∠OPQ=∠OQP,
∵∠PMQ=50°,
∴∠POQ=100°,
∴∠OPQ+∠OQP=180°-100°=80°,
∴∠OPQ=∠OQP=40°,
∴∠A+∠APO=∠POM=20°+40°=60°,
∵PO=OM,
∴△POM是等邊三角形,
∴PM=OP=OM,
∴以PM為邊作圓的內(nèi)接正多邊形,則這個(gè)正多邊形是正六邊形.
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,OA=1,AC是⊙O的弦,過點(diǎn)C的切線交AB的延長線于點(diǎn)D,若BD=,則∠ACD=_____________°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一次數(shù)學(xué)活動(dòng)課上,小明用18個(gè)棱長為1的正方體積木搭成一個(gè)幾何體,然后他請(qǐng)小亮用其他棱長為1的正方體積木在旁邊再搭一個(gè)幾何體,使小亮所搭幾何體恰好和小明所搭幾何體拼成一個(gè)無空隙的大長方體(不改變小明所搭幾何體的形狀).請(qǐng)從下面的A、B兩題中任選一題作答,我選擇__________.
A、按照小明的要求搭幾何體,小亮至少需要__________個(gè)正方體積木.
B、按照小明的要求,小亮所搭幾何體的表面積最小為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△PQN中,若∠P=∠Q+α(0°<α≤25°),則稱△PQN為“差角三角形”,且∠P是 ∠Q的“差角”.
(1)已知△ABC是等邊三角形,判斷△ABC是否為“差角三角形”,并說明理由;
(2)在△ABC中,∠C=90°,50°≤∠B≤70°,判斷△ABC是否為“差角三角形”,若是,請(qǐng)寫出所有的“差角”并說明理由;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①是一個(gè)長為2a,寬為2b的長方形,沿圖中的虛線剪開分成四個(gè)大小相等的長方形然后按照?qǐng)D②所示拼成一個(gè)正方形.
(1)觀察圖②,請(qǐng)寫出三個(gè)代數(shù)式(a+b)2,(a﹣b)2,ab之間的一個(gè)等量關(guān)系: ;
(2)根據(jù)上述(1)中得到的等量關(guān)系,解決下列問題:已知x+y=6,xy=5,求x﹣y的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】北京時(shí)間2015年7月31日,國際奧委會(huì)主席巴赫宣布:中國北京獲得2022年第24屆冬季奧林匹克運(yùn)動(dòng)會(huì)舉辦權(quán).北京也創(chuàng)造歷史,成為第一個(gè)既舉辦過夏奧會(huì)又舉辦冬奧會(huì)的城市,張家口也成為本屆冬奧會(huì)的協(xié)辦城市.近期,新建北京至張家口鐵路可行性研究報(bào)告已經(jīng)獲得國家發(fā)改委批復(fù),同意新建北京至張家口鐵路,鐵路全長約180千米.按照設(shè)計(jì),京張高鐵列車的平均行駛速度是普通快車的1.5倍,用時(shí)比普通快車用時(shí)少了20分鐘,求高鐵列車的平均行駛速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某海域有、、三艘船正在捕魚作業(yè),船突然出現(xiàn)故障,向、兩船發(fā)出緊急求救信號(hào),此時(shí)船位于船的北偏西方向,距船海里的海域,船位于船的北偏東方向,同時(shí)又位于船的北偏東方向.
(1)求的度數(shù);
船以每小時(shí)海里的速度前去救援,問多長時(shí)間能到出事地點(diǎn).(結(jié)果精確到小時(shí)).(參考數(shù)據(jù):,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=kx+4的圖象經(jīng)過點(diǎn)(﹣3,﹣2).
(1)求這個(gè)一次函數(shù)的表達(dá)式;
(2)畫出此一次函數(shù)的圖象,并求它的截距;
(3)判斷點(diǎn)(3,5)是否在此函數(shù)的圖象上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線AB分別與x軸、y軸交于A、B兩點(diǎn),OC平分∠AOB交AB于點(diǎn)C,點(diǎn)D為線段AB上一點(diǎn),過點(diǎn)D作DE//OC交y軸于點(diǎn)E,已知AO=m,BO=n,且m、n滿足n2-12+36+|n-2m|=0.
(1)求A、B兩點(diǎn)的坐標(biāo)?
(2)若點(diǎn)D為AB中點(diǎn),求OE的長?
(3)如圖2,若點(diǎn)P(x,-2x+6)為直線AB在x軸下方的一點(diǎn),點(diǎn)E是y軸的正半軸上一動(dòng)點(diǎn),以E為直角頂點(diǎn)作等腰直角△PEF,使點(diǎn)F在第一象限,且F點(diǎn)的橫、縱坐標(biāo)始終相等,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com