【題目】如圖,的直徑,,,以為邊作圓的內(nèi)接正多邊形,則這個(gè)正多邊形是(

A. 正七邊形 B. 正八邊形

C. 正六邊形 D. 正十邊形

【答案】C

【解析】

根據(jù)圓周角定理求得∠POQ=100°,由等腰三角形的性質(zhì)得出∠OPQ=∠OQP,再由外角的性質(zhì)得出∠A+∠APO=∠POM=20°+40°=60°,即可得出△POM是等邊三角形,再由正六邊形的性質(zhì)得出答案.

連接QO,PO,如圖所示,

∵QO=PO,

∴∠OPQ=∠OQP,

∵∠PMQ=50°,

∴∠POQ=100°,

∴∠OPQ+∠OQP=180°-100°=80°,

∴∠OPQ=∠OQP=40°,

∴∠A+∠APO=∠POM=20°+40°=60°,

∵PO=OM,

∴△POM是等邊三角形,

∴PM=OP=OM,

∴以PM為邊作圓的內(nèi)接正多邊形,則這個(gè)正多邊形是正六邊形.

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,OA=1,AC是⊙O的弦,過點(diǎn)C的切線交AB的延長線于點(diǎn)D,若BD=,則∠ACD=_____________°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一次數(shù)學(xué)活動(dòng)課上,小明用18個(gè)棱長為1的正方體積木搭成一個(gè)幾何體,然后他請(qǐng)小亮用其他棱長為1的正方體積木在旁邊再搭一個(gè)幾何體,使小亮所搭幾何體恰好和小明所搭幾何體拼成一個(gè)無空隙的大長方體(不改變小明所搭幾何體的形狀).請(qǐng)從下面的A、B兩題中任選一題作答,我選擇__________

A、按照小明的要求搭幾何體,小亮至少需要__________個(gè)正方體積木.

B、按照小明的要求,小亮所搭幾何體的表面積最小為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】PQN中,若∠PQαα≤25°),則稱PQN差角三角形”,且∠P Q差角”.

1)已知ABC是等邊三角形,判斷ABC是否為差角三角形,并說明理由;

2)在ABC中,∠C90°,50°≤B≤70°,判斷ABC是否為差角三角形,若是,請(qǐng)寫出所有的差角并說明理由;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①是一個(gè)長為2a,寬為2b的長方形,沿圖中的虛線剪開分成四個(gè)大小相等的長方形然后按照?qǐng)D②所示拼成一個(gè)正方形.

1)觀察圖②,請(qǐng)寫出三個(gè)代數(shù)式(a+b2,(ab2,ab之間的一個(gè)等量關(guān)系:   ;

2)根據(jù)上述(1)中得到的等量關(guān)系,解決下列問題:已知x+y6xy5,求xy的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】北京時(shí)間2015731日,國際奧委會(huì)主席巴赫宣布:中國北京獲得2022年第24屆冬季奧林匹克運(yùn)動(dòng)會(huì)舉辦權(quán).北京也創(chuàng)造歷史,成為第一個(gè)既舉辦過夏奧會(huì)又舉辦冬奧會(huì)的城市,張家口也成為本屆冬奧會(huì)的協(xié)辦城市.近期,新建北京至張家口鐵路可行性研究報(bào)告已經(jīng)獲得國家發(fā)改委批復(fù),同意新建北京至張家口鐵路,鐵路全長約180千米.按照設(shè)計(jì),京張高鐵列車的平均行駛速度是普通快車的1.5倍,用時(shí)比普通快車用時(shí)少了20分鐘,求高鐵列車的平均行駛速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某海域有、、三艘船正在捕魚作業(yè),船突然出現(xiàn)故障,向兩船發(fā)出緊急求救信號(hào),此時(shí)船位于船的北偏西方向,距海里的海域,船位于船的北偏東方向,同時(shí)又位于船的北偏東方向.

(1)的度數(shù);

船以每小時(shí)海里的速度前去救援,問多長時(shí)間能到出事地點(diǎn).(結(jié)果精確到小時(shí)).(參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)ykx+4的圖象經(jīng)過點(diǎn)(﹣3,﹣2).

1)求這個(gè)一次函數(shù)的表達(dá)式;

2)畫出此一次函數(shù)的圖象,并求它的截距;

3)判斷點(diǎn)(35)是否在此函數(shù)的圖象上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線AB分別與x軸、y軸交于A、B兩點(diǎn),OC平分∠AOB交AB于點(diǎn)C,點(diǎn)D為線段AB上一點(diǎn),過點(diǎn)D作DE//OC交y軸于點(diǎn)E,已知AO=m,BO=n,且m、n滿足n2-12+36+|n-2m|=0.

(1)求A、B兩點(diǎn)的坐標(biāo)?

(2)若點(diǎn)D為AB中點(diǎn),求OE的長?

(3)如圖2,若點(diǎn)P(x,-2x+6)為直線AB在x軸下方的一點(diǎn),點(diǎn)E是y軸的正半軸上一動(dòng)點(diǎn),以E為直角頂點(diǎn)作等腰直角△PEF,使點(diǎn)F在第一象限,且F點(diǎn)的橫、縱坐標(biāo)始終相等,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案