【題目】教育部布的《基礎教育課程改革綱要》要求每位學生每學年都要參加社會實踐活動,某學校組織了一次測量探究活動,如圖,某大樓的頂部豎有一塊廣告牌CD,小明與同學們在山坡的坡腳A處測得廣告牌底部D的仰角為53°,沿坡面AB向上走到B處測得廣告牌頂部C的仰角為45°,已知山坡AB的坡度1:,AB=10米,AE=21米,求廣告牌CD的高度.(測角器的高度忽略不計,結果精確到0.1米,參考數據:≈1.41,≈1.73,tan53°≈,cos53°≈0.60)
【答案】宣傳牌CD高約6.7米.
【解析】
過B作BG⊥DE于G,BH⊥AE,在△ADE中解直角三角形求出DE的長,進而可求出EH即BG的長,在Rt△CBG中,∠CBG=45°,則CG=BG,由此可求出CG的長然后根據CD=CG+GE﹣DE即可求出宣傳牌的高度.
過B作BG⊥DE于G,BH⊥AE于H,
Rt△ABF中,i=tan∠BAH=,
∴∠BAH=30°,
∴BH=AB=5;AH=5,
∴BG=AH+AE=5+21,
在Rt△BGC中,∠CBG=45°,
∴CG=BG=5+21,
在Rt△ADE中,∠DAE=53°,AE=21,
∴DE=AE=28.
∴CD=CG+GE﹣DE=26+5﹣28≈6.7m.
答:宣傳牌CD高約6.7米.
科目:初中數學 來源: 題型:
【題目】如圖,在菱形ABCD中,∠ABC=120°,將菱形折疊,使點A恰好落在對角線BD上的點G處(不與B、D重合),折痕為EF,若DG=2,BG=6,則BE的長為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一輛摩拜單車放在水平的地面上,車把頭下方A處與坐墊下方B處在平行于地面的水平線上,A、B之間的距離約為49cm,現測得AC、BC與AB的夾角分別為45°與68°,若點C到地面的距離CD為28cm,坐墊中軸E處與點B的距離BE為4cm,求點E到地面的距離(結果保留一位小數).(參考數據:sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,已知直線,線段在直線上,于點,且,是線段上異于兩端點的一點,過點的直線分別交、于點、(點、位于點的兩側),滿足,連接、.
(1)求證:;
(2)連結、,與相交于點,如圖2,
①當時,求證:;
②當時,設的面積為,的面積為,的面積為,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】據統(tǒng)計,2016年底全球支付寶用戶數為4.5億,2018年底達到9億假設每年增長率相同,則按此速度增長,估計2019年底全球支付寶用戶可達(≈1.414)( 。
A.11.25億B.13.35億C.12.73億D.14億
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法:①平分弦的直徑垂直于弦;②在n次隨機實驗中,事件A出現m次,則事件A發(fā)生的頻率,就是事件A的概率;③各角相等的圓外切多邊形一定是正多邊形;④各角相等的圓內接多邊形一定是正多邊形;⑤若一個事件可能發(fā)生的結果共有n種,則每一種結果發(fā)生的可能性是.其中正確的個數( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】規(guī)定:不相交的兩個函數圖象在豎直方向上的最短距離為這兩個函數的“親近距離”
(1)求拋物線y=x2﹣2x+3與x軸的“親近距離”;
(2)在探究問題:求拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”的過程中,有人提出:過拋物線的頂點向x軸作垂線與直線相交,則該問題的“親近距離”一定是拋物線頂點與交點之間的距離,你同意他的看法嗎?請說明理由.
(3)若拋物線y=x2﹣2x+3與拋物線y=+c的“親近距離”為,求c的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AF平分∠CAB,交CD于點E,交CB于點F.若AC=3,AB=5,則CE的長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形網格上有6個斜三角形:
①△ABC,②△CDB,③△DEB,④△FBG,⑤△HGF,⑥△EKF.
在②~⑥中,與①相似的三角形的序號是____.(把你認為正確的都填上)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com