【題目】計算題:
(1) 18+(-12)+(-21)+(+12)
(2)8+(-10)+(-2)-(-5)
(3)
(4)
(5)
(6)(- 1)-(+6)-2.25+
(7)(-)× ×(-)
(8)(+)×∣-∣××(-)
【答案】(1)-3;(2)1;(3)-5;(4)1;(5)-1;(6)-7;(7);(8)4.
【解析】
(1)運(yùn)用加法交換律和結(jié)合律進(jìn)行計算;
(2)根據(jù)有理數(shù)加法法則依次計算即可;
(3)運(yùn)用加法交換律和結(jié)合律進(jìn)行計算;
(4)去括號,然后運(yùn)用加法交換律和結(jié)合律進(jìn)行計算;
(5)去括號和絕對值,然后依次計算即可;
(6)運(yùn)用加法交換律和結(jié)合律進(jìn)行計算;
(7)根據(jù)有理數(shù)乘法法則直接計算即可;
(8)化簡絕對值,然后根據(jù)有理數(shù)乘法法則直接計算即可.
解:(1)原式=(18+12)+(-12-21)=30+(-33)=-3;
(2)原式=-2+(-2) -(-5)=-4+5=1;
(3)原式;
(4)原式;
(5)原式;
(6)原式;
(7)原式;
(8)原式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖都是由7個小立方體搭成的幾何體,從不同方向看幾何體,分別畫出它們的主視圖、左視圖與俯視圖,并在小正方形內(nèi)填上表示該位置的小正方體的個數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,BC是直徑,⊙O的切線PA交CB的延長線于點P,OE∥AC交AB于點F,交PA于點E,連接BE.
(1)判斷BE與⊙O的位置關(guān)系并說明理由;
(2)若⊙O的半徑為4,BE=3,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】高新一中新圖書館在“校園書香四溢”活動中迎來了借書高潮,上周借書記錄如下表:(超過100冊的部分記為正,少于100冊的部分記為負(fù))
(1)上星期借書最多的一天比借書最少的一天多借出圖書多少冊?
(2)上星期平均每天借出多少冊書?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線經(jīng)過, , 三點.
()求出拋物線的解析式.
()是拋物線上一動點,過作軸,垂足為,是否存在點,使得以, , 為頂點的三角形與相似?若存在,請求出符合條件的點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,邊長為2的正方形OABC的頂點A、C分別在x軸、y軸的正半軸上,二次函數(shù)y=的圖像經(jīng)過B、C兩點.
(1)求該二次函數(shù)的解析式;
(2)結(jié)合函數(shù)的圖像探索:當(dāng)y>0時x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,AD⊥BC,CE⊥AB,垂足分別為 D,E,AD、CE 交于點 F,若 EF=EB=5, AE=7,則 CF 的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】畫圖并填空,如圖:方格紙中每個小正方形的邊長都為1,△ABC的頂點都在方格紙的格點上,將△ABC經(jīng)過一次平移后得到△A'B'C'.圖中標(biāo)出了點C的對應(yīng)點C'.
(1)請畫出平移后的△A'B'C';
(2)若連接AA',BB',則這兩條線段的關(guān)系是 ;
(3)利用網(wǎng)格畫出△ABC中AC邊上的中線BD以及AB邊上的高CE;
(4)線段AB在平移過程中掃過區(qū)域的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點A(t﹣1,1)與點B關(guān)于過點(t,0)且垂直于x軸的直線對稱.
(1)以AB為底邊作等腰三角形ABC,
①當(dāng)t=2時,點B的坐標(biāo)為 ;
②當(dāng)t=0.5且直線AC經(jīng)過原點O時,點C與x軸的距離為 ;
③若上所有點到y軸的距離都不小于1,則t的取值范圍是 .
(2)以AB為斜邊作等腰直角三角形ABD,直線m過點(0,b)且與x軸平行,若直線m上存在點P,上存在點K,滿足PK=1,直接寫出b的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com