【題目】如圖,已知一次函數(shù)y1=kx+b的圖象與反比例函數(shù)的圖象交于A、B兩點, 且點A的坐標為(-2,3),點B的縱坐標是-2,求:
(1)一次函數(shù)與反比例函數(shù)的解析式;
(2)利用圖像指出,當為何值時有> ;當為何值時有<
(3)利用圖像指出,當>3時的取值范圍。
【答案】見解析
【解析】試題分析:(1)把A點坐標代入反比例函數(shù)解析式求出m的值,把B點的縱坐標代入反比例函數(shù)解析式求出B點的橫坐標,再把A、B兩點的坐標代入一次函數(shù)解析式求出k、b的值即可;
(2)根據(jù)A、B的橫坐標,結合圖象即可得出答案;
(3)求出x=3時y2的值,然后結合圖象即可得出y2的取值范圍.
試題解析:
解:(1)∵A(-2,3)在反比例函數(shù)y2=的圖象上,
∴m=-2×3
=-6,
即反比例函數(shù)的解析式為y2=.
當y2=-2時,x=3,
即B(3,-2),
把A(-2,3),B(3,-2)代入y=kx+b得:
,
解得: ,
即一次函數(shù)的解析式為y=-x+1;
(2)結合圖象可得y1>y2時對應的圖象在點A的左側和y軸與點B之間,
即x<-2或0<x<3;
同理y1<y2時對應的圖象在點A與y軸之間和點B的右側,
即-2<x<0或x>3;
(3)當x=3時,y2=-2,
當x>3時反比例函數(shù)對應的圖象在點B的右側部分,
對應的函數(shù)值-2<y2<0.
點睛:本題考查了一次函數(shù)與反比例函數(shù)的交點問題,用待定系數(shù)法求一次函數(shù)的解析式等知識點,主要考查學生的計算能力和觀察圖形的能力,用了數(shù)形結合思想.
【題型】解答題
【結束】
26
【題目】如圖,四邊形ABCD是平行四邊形,點A(1,0),B(4,1),C(4,4).反比例函數(shù) (x>0)的圖像經(jīng)過點D,點P是一次函數(shù)y=ax+4-4a(a0)的圖像與該反比例函數(shù)圖像的一個公共點.
(1)求反比例函數(shù)的表達式;
(2)一次函數(shù)y=ax+4-4a(a0)的圖像恒過一定點,直接寫出這個定點的坐標.
(3)對于一次函數(shù)y=ax+4-4a(a0),當y隨x的增大而減小時,確定點P的橫坐標的取值范圍.(不必寫出過程)
【答案】見解析
【解析】試題分析:(1)由B(4,1),C(4,4)得到BC⊥x軸,BC=3,根據(jù)平行四邊形的性質得AD=BC=3,AD⊥x軸,而A點坐標為(1,0),可得到點D的坐標為(1,3),然后把D(1,3)代入y=即可得到k=3,從而可確定反比例函數(shù)的解析式;
(2)把x=4代入y=ax+4-4a得到y=4,即可說明一次函數(shù)y=ax+4-4a的圖象一定過點C(4,4);
(3)設點P的橫坐標為x,由于一次函數(shù)y=ax+4-4a過C點,并且y隨x的增大而減小時,則P點的縱坐標要大于4或橫坐標要大于4,當縱坐標大于4時,由y=>4得到x的范圍,于是得到P點橫坐標的取值范圍.
試題解析:
解:(1)∵四邊形ABCD是平行四邊形,
∴AD=BC,
∵B(4,1),C(4,4),
∴BC⊥x軸,AD=BC=3,AD⊥x軸,
而A點坐標為(1,0),
∴點D的坐標為(1,3).
∵反比例函數(shù)y=(x>0)的函數(shù)圖象經(jīng)過點D(1,3),
∴k=1×3=3,
,∴反比例函數(shù)的解析式為y=;
(2)當x=4時,y=ax+4-4a=4a+4-4a=4,
∴一次函數(shù)y=ax+4-4a(a≠0)的圖象一定過點C(4,4);
(3)設點P的橫坐標為x,
∵一次函數(shù)y=ax+4-4a(a≠0)過C點,并且y隨x的增大而減小,
∴P點的縱坐標要大于4或橫坐標大于4(即x>4),
當縱坐標大于4時,
y=>4,
解得:x<,
∵P在第一象限,
∴0<x<,
則P點的橫坐標的范圍為0<x<或x>4,
科目:初中數(shù)學 來源: 題型:
【題目】希望中學計劃從榮威公司買A、B兩種型號的小黑板,經(jīng)治談,購買一塊A型小黑板比購買一塊B型小黑板多用20元,且購買5塊A型小黑板和購買4塊B型小黑板共需820元.
求購買一塊A型小黑板,一塊B型小黑板各需要多少元?
根據(jù)希望中學實際情況,需從榮威公司買A,B兩種型號的小黑板共60塊,要求購買A、B兩種型號的小黑板的總費用不超過5240元,并且購買A型小黑板的數(shù)量應大于購買A、B兩種型號的小黑板總數(shù)量的,請你通過計算,求出希望中學從榮威公司買A、B兩種型號的小黑板有哪幾種方案?并說明哪種方案更節(jié)約資金?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料;
課堂上,老師設計了一個活動:將一個4×4的正方形網(wǎng)格沿著網(wǎng)格線劃分成兩部分(分別用陰影和空白表示),使得這兩部分圖形是全等的,請同學們嘗試給出劃分的方法.約定:如果兩位同學的劃分結果經(jīng)過旋轉、翻折后能夠重合,那么就認為他們的劃分方法相同.
小方、小易和小紅分別對網(wǎng)格進行了劃分,結果如圖①、圖②、圖③所示.
小方說:“我們三個人的劃分方法都是正確的,但是將小紅的整個圖形(圖③)逆時針旋轉90后得到的劃分方法與我的劃分方法(圖①)是一樣的,應該認為是同一種方法,而小易的劃分方法與我的不同,”
老師說:“小方說得對.”
完成下列問題:
(1)圖④的劃分方法是否正確?
(2)判斷圖⑤的劃分方法與圖②小易的劃分方法是否相同,并說明你的理由.
(3)請你再想出一種與已有方法不同的劃分方法,使之滿足上述條件,并在圖⑥中畫出來.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場今年1~5月的商品銷售總額一共是410萬元,圖①表示的是其中每個月銷售總額的情況,圖②表示的是商場服裝部各月銷售額占商場當月銷售總額的百分比情況,觀察圖①、圖②,下列說法不正確的是( 。
A. 4月份商場的商品銷售總額是75萬元 B. 1月份商場服裝部的銷售額是22萬元
C. 5月份商場服裝部的銷售額比4月份減少了 D. 3月份商場服裝部的銷售額比2月份減少了
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】海靜中學開展以“我最喜愛的職業(yè)”為主題的調查活動,圍繞“在演員、教師、醫(yī)生、律師、公務員共五類職業(yè)中,你最喜愛哪一類?(必選且只選一類)”的問題,在全校范圍內隨機抽取部分學生進行問卷調查,將調查結果整理后繪制成如圖所示的不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息回答下列問題:
(1)本次調查共抽取了多少名學生?
(2)求在被調查的學生中,最喜愛教師職業(yè)的人數(shù),并補全條形統(tǒng)計圖;
(3)若海靜中學共有1500名學生,請你估計該中學最喜愛律師職業(yè)的學生有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A、D、C、F在同一條直線上,AB=DE,BC=EF,要使△ABC≌△DEF,還需要添加一個條件是( 。
A. ∠BCA=∠F B. BC∥EF C. ∠A=∠EDF D. AD=CF
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,把一條拋物線先向上平移3個單位長度,然后繞原點選擇180°得到拋物線y=x2+5x+6,則原拋物線的解析式是( 。
A.y=﹣(x﹣ )2﹣
B.y=﹣(x+ )2﹣
C.y=﹣(x﹣ )2﹣
D.y=﹣(x+ )2+
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.
(1)求DC的長;
(2)求AB的長;
(3)求證:△ABC是直角三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,過點C的直線MN∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD,BE.
(1)求證:CE=AD;
(2)當D為AB中點時,四邊形BECD是什么特殊四邊形?說明你的理由;
(3)若D為AB中點,則當∠A的大小滿足什么條件時,四邊形BECD是正方形?請說明你的理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com