【題目】如圖,在平面直角坐標(biāo)系中,直線軸交于點(diǎn),與軸交于點(diǎn),與函數(shù)的圖象的一個(gè)交點(diǎn)為

1)求,,的值;

2)將線段向右平移得到對應(yīng)線段,當(dāng)點(diǎn)落在函數(shù)的圖象上時(shí),求線段掃過的面積.

【答案】1m=4, n=1,k=3.23.

【解析】

1 把點(diǎn),分別代入直線中即可求出m=4,再把代入直線即可求出n=1.代入函數(shù)求出k即可;

2)由(1)可求出點(diǎn)B的坐標(biāo)為(0,4),點(diǎn)B‘是由點(diǎn)B向右平移得到,故點(diǎn)B’的縱坐標(biāo)為4,把它代入反比例函數(shù)解析式即可求出它的橫坐標(biāo),根據(jù)平移的知識可知四邊形AA’B’B是平行四邊形,再根據(jù)平行四邊形的面積計(jì)算公式計(jì)算即可.

解:(1)把點(diǎn),分別代入直線中得:

-4+m=0,

m=4,

∴直線解析式為.

代入得:

n=-3+4=1.

∴點(diǎn)C的坐標(biāo)為(3,1

把(3,1)代入函數(shù)得:

解得:k=3.

m=4, n=1,k=3.

(2)如圖,設(shè)點(diǎn)B的坐標(biāo)為(0,y)則y=-0+4=4

∴點(diǎn)B的坐標(biāo)是(0,4

當(dāng)y=4時(shí),

解得,

∴點(diǎn)B’ ,4

A’,B’是由A,B向右平移得到,

∴四邊形AA’B’B是平行四邊形,

故四邊形AA’B’B的面積=4=3.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知的半徑為 4,是圓的直徑,點(diǎn)的切線上的一個(gè)動點(diǎn),連接于點(diǎn),弦平行于,連接.

(1)試判斷直線的位置關(guān)系,并說明理由;

(2)當(dāng)__________時(shí),四邊形為菱形;

(3)當(dāng)___________時(shí),四邊形為正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,按以下步驟作圖:

分別以點(diǎn)C和點(diǎn)D為圓心,大于的同樣的長為半徑作弧,兩弧交于M,N兩點(diǎn);

作直線MN,交CD于點(diǎn)E,連接BE

若直線MN恰好經(jīng)過點(diǎn)A,則下列說法錯(cuò)誤的是(  )

A.ABC60°

B.

C.AB4,則BE

D.tanCBE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知的直徑,于點(diǎn),于另一點(diǎn)

1)求證:;

2)若上一動點(diǎn),則

①當(dāng) 時(shí),以,,為頂點(diǎn)的四邊形是正方形;

②當(dāng) 時(shí),以,,為頂點(diǎn)的四邊形是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線經(jīng)過點(diǎn),.把拋物線與線段圍成的封閉圖形記作

1)求此拋物線的解析式;

2)點(diǎn)為圖形中的拋物線上一點(diǎn),且點(diǎn)的橫坐標(biāo)為,過點(diǎn)軸,交線段于點(diǎn).當(dāng)為等腰直角三角形時(shí),求的值;

3)點(diǎn)是直線上一點(diǎn),且點(diǎn)的橫坐標(biāo)為,以線段為邊作正方形,且使正方形與圖形在直線的同側(cè),當(dāng),兩點(diǎn)中只有一個(gè)點(diǎn)在圖形的內(nèi)部時(shí),請直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)接到一批防護(hù)服生產(chǎn)任務(wù),按要求15天完成,已知這批防護(hù)服的出廠價(jià)為每件80元,為按時(shí)完成任務(wù),該企業(yè)動員放假回家的工人及時(shí)返回加班趕制.該企業(yè)第天生產(chǎn)的防護(hù)服數(shù)量為件,之間的關(guān)系可以用圖中的函數(shù)圖象來刻畫.

1)直接寫出的函數(shù)關(guān)系式________

2)由于疫情加重,原材料緊缺,防護(hù)服的成本前5天為每件50元,從第6天起每件防護(hù)服的成本比前一天增加2元,設(shè)第天創(chuàng)造的利潤為元,直接利用(1)的結(jié)論,求之間的函數(shù)表達(dá)式,并求出第幾天的利潤最大,最大利潤是多少元?(利潤=出廠價(jià)-成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)實(shí)踐小組想利用鏡子的反射測量池塘邊一棵樹的高度AB.測量和計(jì)算的部分步驟如下:

①如圖,樹與地面垂直,在地面上的點(diǎn)C處放置一塊鏡子,小明站在BC的延長線上,當(dāng)小明在鏡子中剛好看到樹的頂點(diǎn)A時(shí),測得小明到鏡子的距離CD2米,小明的眼睛E到地面的距離ED1.5米;

②將鏡子從點(diǎn)C沿BC的延長線向后移動10米到點(diǎn)F處,小明向后移動到點(diǎn)H處時(shí),小明的眼睛G又剛好在鏡子中看到樹的頂點(diǎn)A,這時(shí)測得小明到鏡子的距離FH3米;

③計(jì)算樹的高度AB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,的直徑,、為圓周上兩點(diǎn),且,過點(diǎn),交的延長線于點(diǎn)

1)求證:切線;

2)填空:①當(dāng)四邊形為菱形,則的度數(shù)為________;

②當(dāng)時(shí),四邊形的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實(shí)踐 中,,點(diǎn)為斜邊上的動點(diǎn)(不與點(diǎn)重合)

1)操作發(fā)現(xiàn): 如圖①,當(dāng)時(shí),把線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到線段,連接

的度數(shù)為________;

②當(dāng)________時(shí),四邊形為正方形;

2)探究證明: 如圖②,當(dāng)時(shí),把線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)后并延長為原來的兩倍, 記為線段,連接

①在點(diǎn)的運(yùn)動過程中,請判斷的大小關(guān)系,并證明;

②當(dāng)時(shí),求證:四邊形為矩形.

查看答案和解析>>

同步練習(xí)冊答案