【題目】某企業(yè)接到一批防護(hù)服生產(chǎn)任務(wù),按要求15天完成,已知這批防護(hù)服的出廠價(jià)為每件80元,為按時(shí)完成任務(wù),該企業(yè)動員放假回家的工人及時(shí)返回加班趕制.該企業(yè)第天生產(chǎn)的防護(hù)服數(shù)量為件,與之間的關(guān)系可以用圖中的函數(shù)圖象來刻畫.
(1)直接寫出與的函數(shù)關(guān)系式________;
(2)由于疫情加重,原材料緊缺,防護(hù)服的成本前5天為每件50元,從第6天起每件防護(hù)服的成本比前一天增加2元,設(shè)第天創(chuàng)造的利潤為元,直接利用(1)的結(jié)論,求與之間的函數(shù)表達(dá)式,并求出第幾天的利潤最大,最大利潤是多少元?(利潤=出廠價(jià)-成本)
【答案】(1),為正整數(shù);(2),,第8天的利潤最大,最大利潤是8640元
【解析】
(1)根據(jù)圖像分別寫出當(dāng)0<x≤5和5<x≤15時(shí)的函數(shù)即可;(2)設(shè)每件防護(hù)服的成本為元.(2)設(shè)每件防護(hù)服的成本為元,分別寫出當(dāng)0<x≤5和5<x≤15時(shí)求出最大利潤,在進(jìn)行比較即可
解:(1)當(dāng)0<x≤5時(shí),設(shè)表達(dá)式為y=kx
由題意得:270=5k,解得k=54
所以解析式為y=54x
當(dāng)5<x≤15時(shí),設(shè)表達(dá)式為y=kx+b
由題意得: ,解得
所以解析式為y=30x+120
(2)設(shè)每件防護(hù)服的成本為元,①當(dāng)時(shí),,則利潤
∵,,
∴當(dāng)時(shí),(元)
②時(shí),,則利潤
∵,,
∴當(dāng)時(shí),(元)
綜上所述,
第8天的利潤最大,最大利潤是多少元8640元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠B=60°,AB=2,M為邊AB的中點(diǎn),N為邊BC上一動點(diǎn)(不與點(diǎn)B重合),將△BMN沿直線MN折疊,使點(diǎn)B落在點(diǎn)E處,連接DE、CE,當(dāng)△CDE為等腰三角形時(shí),BN的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線y=2x+b與雙曲線交于A,B兩點(diǎn).P是線段AB上一點(diǎn)(不與點(diǎn)A,點(diǎn)B重合),過點(diǎn)P作平行于x軸的直線交雙曲線于點(diǎn)M,過點(diǎn)P作平行于y軸的直線交雙曲線于點(diǎn)N.
(1)當(dāng)點(diǎn)A的橫坐標(biāo)為1時(shí),求b的值:
(2)在(1)的條件下,設(shè)P點(diǎn)的橫坐標(biāo)為m,
①若m=-1,判斷PM與PN的數(shù)量關(guān)系,并說明理由;
②若PM<PN,結(jié)合函數(shù)圖象,直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+4x+c(a≠0)的圖象與x軸交A,B兩點(diǎn),與y軸交于點(diǎn)C,直線y=﹣2x﹣6經(jīng)過點(diǎn)A,C.
(1)求該二次函數(shù)的解析式;
(2)點(diǎn)P為第三象限內(nèi)拋物線上的一個(gè)動點(diǎn),△APC的面積為S,試求S的最大值;
(3)若P為拋物線的頂點(diǎn),且直角三角形APQ的直角頂點(diǎn)Q在y軸上,請直接寫出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與軸交于點(diǎn),與軸交于點(diǎn),與函數(shù)的圖象的一個(gè)交點(diǎn)為.
(1)求,,的值;
(2)將線段向右平移得到對應(yīng)線段,當(dāng)點(diǎn)落在函數(shù)的圖象上時(shí),求線段掃過的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為8,點(diǎn)E是正方形內(nèi)部一點(diǎn),連接BE,CE,且∠ABE=∠BCE,點(diǎn)P是AB邊上一動點(diǎn),連接PD,PE,則PD+PE的長度最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)(是常數(shù),)的自變量與函數(shù)值的部分對應(yīng)值如下表:
… | 0 | 1 | 2 | … | |||
… | … |
且當(dāng)時(shí),與其對應(yīng)的函數(shù)值.有下列結(jié)論:①;②和3是關(guān)于的方程的兩個(gè)根;③.其中,正確結(jié)論的個(gè)數(shù)是( )
A. 0B. 1C. 2D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)、點(diǎn)在半徑為的上,為上一動點(diǎn),為軸上一定點(diǎn),且當(dāng)點(diǎn)從點(diǎn)逆時(shí)針運(yùn)動到點(diǎn)時(shí),點(diǎn)的運(yùn)動路徑長是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在中,,都是的半徑,過作交于點(diǎn),過點(diǎn)作的切線交的延長線于點(diǎn).
(1)如圖1,求證:;
(2)如圖2,點(diǎn)在上,連接并延長交于點(diǎn),連接,若,求證:四邊形是平行四邊形;
(3)如圖3,在(2)的條件下,點(diǎn)在上,連接,且,點(diǎn)在上,連接,,交于點(diǎn),且,若,,求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com