【題目】如圖某商場為了吸引顧客,設立了一個可以自由轉動的轉盤,并規(guī)定:每購買500元商品,就能獲得一次轉動轉盤的機會,如果轉盤停止后,指針上對準500、20、100、50、10的區(qū)域,顧客就可以分別獲得500元、200元、100元、50元、10元的購物券一張。(轉盤等分成20)

(1)小華購物450,他獲得購物券的概率是多少?

(2)小麗購物600,那么她獲得100元以上(包括100)券的概率是多少?

【答案】(1)0(2)

【解析】

(1)由于每購買500元商品,才能獲得一次轉動轉盤的機會,所以小華購物450元,不能獲得轉動轉盤的機會,故獲得購物券的概率為0;

(2)找到100元及以上的份數(shù)占總份數(shù)的多少即為獲得100元以上(包括100元)購物券的概率.

解:(1)450<500,

∴小華購物450元,不能獲得轉動轉盤的機會,

∴小華獲得購物券的概率為0;

(2)小麗購物600元,能獲得一次轉動轉盤的機會.

她獲得100元以上(包括100元)購物券的概率是

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A(﹣4,n),B(2,﹣4)是反比例函數(shù)y= 的圖象和一次函數(shù)y=ax+b的圖象的兩個交點.

(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求△AOB的面積;
(3)根據(jù)圖象直接寫出不等式ax+b﹣ <0的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在△ABC中,∠BAC=90°,AB=AC,點D在邊BC上,以AD為邊作正方形ADEF,連結CF,CE

(1)求證:△ABD≌△ACF;

(2)如果BD=AC,求證:CD=CE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,對角線AC與BD相交于點O,過點A作AE∥BD,過點D作ED∥AC,兩線相交于點E.

(1)求證:四邊形AODE是菱形;
(2)連接BE,交AC于點F.若BE⊥ED于點E,求∠AOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:

學習了三角形全等的判定方法(即“SAS”“ASA”“AAS”“SSS”)和直角三角形全等的判定方法(即“HL”)后,小聰繼續(xù)對兩個三角形滿足兩邊和其中一邊的對角對應相等的情形進行研究

小聰將命題用符號語言表示為:在ABCDEF中,AC=DF,BC=EF,B=E

小聰?shù)奶骄糠椒ㄊ菍Α?/span>B分為直角、鈍角、銳角三種情況進行探究.

第一種情況:當∠B 是直角時,如圖1ABCDEF中,AC=DFBC=EF,B=E=90°,根據(jù)“HL”定理,可以知道RtABCRtDEF

第二種情況:當∠B 是銳角時,如圖2,BC=EF,B=E90°,在射線EM上有點D,使DF=AC,畫出符合條件的點D,則ABCDEF的關系是   ;

A.全等 B.不全等 C.不一定全等

第三種情況:當∠B是鈍角時,如圖3,在ABCDEF中,AC=DFBC=EF,B=E90°.過點CAB邊的垂線交AB延長線于點M;同理過點FDE邊的垂線交DE延長線于N,根據(jù)“ASA”,可以知道CBM≌△FEN,請補全圖形,進而證出ABC≌△DEF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,點EAD邊上,點FAD的延長線上,且BE=CF.

(1)求證:四邊形EBCF是平行四邊形.

(2)若BEC=90°,ABE=30°,AB=,求ED的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在ABC中,AB=AC,D為邊BC上一點,以AB,BD為鄰邊作平行四邊形ABDE,連接AD,EC.

(1)求證:ADC≌△ECD;

(2)當點D在什么位置時,四邊形ADCE是矩形,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知DGBC,ACBC,EFAB,1=2,求證:CDAB

查看答案和解析>>

同步練習冊答案