【題目】如圖,已知DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求證:CD⊥AB
【答案】詳見(jiàn)解析.
【解析】分析:根據(jù)平行線的判定推出DG∥AC,推出∠2=∠1=∠DCA,推出CD∥EF,根據(jù)平行線的性質(zhì)推出CD⊥AB.
本題解析:
證明:∵ DG⊥BC,AC⊥BC(已知),
∴ ∠DGB=∠ACB=90°(垂直的定義),
∴ DG∥AC(同位角相等,兩直線平行).
∴ ∠2=∠ACD(兩直線平行,內(nèi)錯(cuò)角相等).
∵ ∠1=∠2(已知),∴ ∠1=∠ACD(等量代換),
∴ EF∥CD(同位角相等,兩直線平行).
∴ ∠AEF=∠ADC(兩直線平行,同位角相等).
∵ EF⊥AB(已知),∴ ∠AEF=90°(垂直的定義),
∴ ∠ADC=90°(等量代換).
∴ CD⊥AB(垂直的定義).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個(gè)小正方形邊長(zhǎng)都是,每個(gè)小格的頂點(diǎn)叫做格點(diǎn),以格點(diǎn)為頂點(diǎn)分別按下列要求畫(huà)三角形.
()畫(huà)一個(gè)三角形,使它的三邊長(zhǎng)都是有理數(shù).
()畫(huà)一個(gè)直角三角形,使它們的三邊長(zhǎng)都是無(wú)理數(shù).
()畫(huà)出與成軸對(duì)稱且與有公共點(diǎn)的格點(diǎn)三角形(畫(huà)出一個(gè)即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知MB=ND,∠MBA=∠NDC,下列條件中不能判定△ABM≌△CDN的是( )
A. ∠M=∠N B. AM=CN C. AB=CD D. AM∥CN
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2009年初甲型HIN1流感在墨西哥爆發(fā)并在全球蔓延,研究表明,甲型HIN1流感球形病毒細(xì)胞的直徑約為0.00000156 m,用科學(xué)記數(shù)法表示這個(gè)數(shù)是( )
A. 0.156×10-5m B. 0.156×105m C. 1.56×10-6m D. 1.56×106m
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某次數(shù)學(xué)測(cè)試的平均成績(jī)?yōu)?0分.如果小田考93分記作+13分,那么小潤(rùn)考76分記作 分,小紅考80分記作 分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,點(diǎn)E在對(duì)角線AC上,EC=BC=DC.
(1)若∠CBD=40°,求∠BAD的度數(shù);
(2)求證:∠1=∠2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于A(1,6),B(a,2)兩點(diǎn).
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)直接寫(xiě)出≥時(shí)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=-2x+6與坐標(biāo)軸分別交于點(diǎn)A,B,正比例函數(shù)y=x的圖象與直線y=-2x+6交于點(diǎn)C。
(1)求點(diǎn)A、B的坐標(biāo)。
(2)求△BOC的面積
(3)已知點(diǎn)P是y軸上的一個(gè)動(dòng)點(diǎn),求BP+CP的最小值和此時(shí)點(diǎn)P的坐標(biāo)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com