【題目】九年級(jí)一班邀請(qǐng)、、、、五位評(píng)委對(duì)甲、乙兩位同學(xué)的才藝表演打分,并組織全班50名同學(xué)對(duì)兩人民意測(cè)評(píng)投票,繪制了如下的打分表和不完整的條形統(tǒng)計(jì)圖:
五位評(píng)委的打分表
A | B | C | D | E | |
甲 | 89 | 91 | 93 | 94 | 86 |
乙 | 88 | 87 | 90 | 98 | 92 |
并求得了五位評(píng)委對(duì)甲同學(xué)才藝表演所打分?jǐn)?shù)的平均分和中位數(shù):
(分);中位數(shù)是91分.
(1)求五位評(píng)委對(duì)乙同學(xué)才藝表演所打分?jǐn)?shù)的平均分和中位數(shù);
(2)________,并補(bǔ)全條形統(tǒng)計(jì)圖;
(3)為了從甲、乙兩人中只選拔出一人去參加藝術(shù)節(jié)演出,班級(jí)制定了如下的選拔規(guī)則:
選拔規(guī)則:選拔綜合分最高的同學(xué)參加藝術(shù)節(jié)演出.其中,綜合分=才藝分測(cè)評(píng)分;
才藝分=五位評(píng)委所打分?jǐn)?shù)中去掉一個(gè)最高分和一個(gè)最低分,再算平均分;測(cè)評(píng)分=“好”票數(shù)×2分+“較好”票數(shù)×1分+“一般”票數(shù)×0分
①當(dāng)時(shí),通過計(jì)算說(shuō)明應(yīng)選拔哪位同學(xué)去參加藝術(shù)節(jié)演出?
②通過計(jì)算說(shuō)明的值不能是多少?
【答案】(1)91,90;(2)8,答案見解析;(3)①甲同學(xué);②0.5.
【解析】
解:(1)(分);中位數(shù)是90分;
(2)8,
補(bǔ)全條形統(tǒng)計(jì)圖如解圖:
(3)①甲的才藝分=(分),
甲的測(cè)評(píng)分=40×2+8×1+2×0=88(分),
甲的綜合分=91×0.6+88×(1-0.6)=89.8(分),
乙的才藝分=(分),
乙的測(cè)評(píng)分=42×2+5×1+3×0=89(分),
乙的綜合分=90×0.6+89×(1-0.6)=89.6(分),
∵甲的綜合分>乙的綜合分,
∴應(yīng)選拔甲同學(xué)去參加藝術(shù)節(jié)演出;
②甲的綜合分=(分),
乙的綜合分=(分),
∵從甲、乙兩人中只選拔出一人去參加藝術(shù)節(jié)演出,
∴,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:二次函數(shù)y=x2+2mx+2n,交x軸于A,B兩點(diǎn)(A在B的左側(cè))
(1)當(dāng)m=3時(shí),n=4時(shí), ①求A、B兩點(diǎn)坐標(biāo);②將拋物線向右平移k個(gè)單位后交x軸于M、N(M在N的左側(cè)),若B、M三等分AN,直接寫出k的值;
(2)當(dāng)m=1時(shí),若線段AB上有且只有5個(gè)點(diǎn)的橫坐標(biāo)為整數(shù),求n的取值范圍;
(3)記A(x1,0)、B(x2,0),當(dāng)m、n都是奇數(shù)時(shí),x1、x2能否是有理數(shù)?若能,請(qǐng)舉例驗(yàn)證,若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象分別與x軸,y軸的正半軸分別交于點(diǎn)A,B,AB=2,∠OAB=45°
(1)求一次函數(shù)的解析式;
(2)如果在第二象限內(nèi)有一點(diǎn)C(a,);試用含有a的代數(shù)式表示四邊形ABCO的面積,并求出當(dāng)△ABC的面積與△ABO的面積相等時(shí)a的值;
(3)在x軸上,是否存在點(diǎn)P,使△PAB為等腰三角形?若存在,請(qǐng)直接寫出所有符合條件的點(diǎn)P坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線:與軸交于,兩點(diǎn),直線與軸交于點(diǎn),與的對(duì)稱軸交于點(diǎn),與交于點(diǎn),拋物線的對(duì)稱軸與交于點(diǎn).
(1)求的值;
(2)點(diǎn)能否與點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)重合?若認(rèn)為能,請(qǐng)求出的值;若認(rèn)為不能,說(shuō)明理由;
(3)小林研究了拋物線的解析式后,得到了如下的結(jié)論:因?yàn)?/span>可以取任意實(shí)數(shù),所以點(diǎn)可以在軸上任意移動(dòng),即點(diǎn)可以到達(dá)軸的任何位置,你認(rèn)為他說(shuō)的有道理嗎?說(shuō)說(shuō)你的理由;
(4)當(dāng)拋物線與直線有兩個(gè)公共點(diǎn)時(shí),直接寫出適合條件的的最大整數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為給研究制定《中考改革實(shí)施方案》提出合理化建議,教研人員對(duì)九年級(jí)學(xué)生進(jìn)行了隨機(jī)抽樣調(diào)查,要求被抽查的學(xué)生從物理、化學(xué)、政治、歷史、生物和地理這六個(gè)選考科目中,挑選出一科作為自己的首選科目,將調(diào)查數(shù)據(jù)匯總整理后,繪制出了如圖的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中信息解答下列問題:
(1)被抽查的學(xué)生共有多少人?
(2)將折線統(tǒng)計(jì)圖補(bǔ)充完整;
(3)我市現(xiàn)有九年級(jí)學(xué)生約40000人,請(qǐng)你估計(jì)首選科目是物理的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解學(xué)生關(guān)注熱點(diǎn)新聞的情況,“兩會(huì)”期間,小明對(duì)班級(jí)同學(xué)一周內(nèi)收看“兩會(huì)”新聞的次數(shù)情況作了調(diào)查,調(diào)查結(jié)果統(tǒng)計(jì)如圖所示(其中男生收看次的人數(shù)沒有標(biāo)出).
根據(jù)上述信息,解答下列各題:
×
(1)該班級(jí)女生人數(shù)是__________,女生收看“兩會(huì)”新聞次數(shù)的中位數(shù)是________;
(2)對(duì)于某個(gè)群體,我們把一周內(nèi)收看某熱點(diǎn)新聞次數(shù)不低于次的人數(shù)占其所在群體總?cè)藬?shù)的百分比叫做該群體對(duì)某熱點(diǎn)新聞的“關(guān)注指數(shù)”.如果該班級(jí)男生對(duì)“兩會(huì)”新聞的“關(guān)注指數(shù)”比女生低,試求該班級(jí)男生人數(shù);
(3)為進(jìn)一步分析該班級(jí)男、女生收看“兩會(huì)”新聞次數(shù)的特點(diǎn),小明給出了男生的部分統(tǒng)計(jì)量(如表).
統(tǒng)計(jì)量 | 平均數(shù)(次) | 中位數(shù)(次) | 眾數(shù)(次) | 方差 | … |
該班級(jí)男生 | … |
根據(jù)你所學(xué)過的統(tǒng)計(jì)知識(shí),適當(dāng)計(jì)算女生的有關(guān)統(tǒng)計(jì)量,進(jìn)而比較該班級(jí)男、女生收看“兩會(huì)”新聞次數(shù)的波動(dòng)大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】位于河南省登封市境內(nèi)的元代觀星臺(tái),是中國(guó)現(xiàn)存最早的天文臺(tái),也是世界文化遺產(chǎn)之一.
某校數(shù)學(xué)社團(tuán)的同學(xué)們使用卷尺和自制的測(cè)角儀測(cè)量觀星臺(tái)的高度.如圖所示,他們?cè)诘孛嬉粭l水 平步道上架設(shè)測(cè)角儀,先在點(diǎn)處測(cè)得觀星臺(tái)最高點(diǎn)的仰角為,然后沿方向前進(jìn)到達(dá)點(diǎn)處,測(cè)得點(diǎn)的仰角為.測(cè)角儀的高度為,
求觀星臺(tái)最高點(diǎn)距離地面的高度(結(jié)果精確到.參考數(shù)據(jù): );
“景點(diǎn)簡(jiǎn)介”顯示,觀星臺(tái)的高度為,請(qǐng)計(jì)算本次測(cè)量結(jié)果的誤差,并提出一條減小誤差的合理化建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大學(xué)生利用暑假40天社會(huì)實(shí)踐參與了一家網(wǎng)店經(jīng)營(yíng),了解到一種新型商品成本為20元/件,第x天銷售量為p件,銷售單價(jià)為q元,經(jīng)跟蹤調(diào)查發(fā)現(xiàn),這40天中p與x的關(guān)系保持不變,前20天(包含第20天),q與x的關(guān)系滿足關(guān)系式q=30+ax;從第21天到第40天中,q是基礎(chǔ)價(jià)與浮動(dòng)價(jià)的和,其中基礎(chǔ)價(jià)保持不變,浮動(dòng)價(jià)與x成反比.且得到了表中的數(shù)據(jù).
X(天) | 10 | 21 | 35 |
q(元/件) | 35 | 45 | 35 |
(1)請(qǐng)直接寫出a的值為 ;
(2)從第21天到第40天中,求q與x滿足的關(guān)系式;
(3)若該網(wǎng)店第x天獲得的利潤(rùn)y元,并且已知這40天里前20天中y與x的函數(shù)關(guān)系式為y=﹣x2+15x+500
i請(qǐng)直接寫出這40天中p與x的關(guān)系式為: ;
ii求這40天里該網(wǎng)店第幾天獲得的利潤(rùn)最大?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com