【題目】2019年春季,莒縣某服裝商店分兩次從批發(fā)市場(chǎng)購(gòu)進(jìn)同一款服裝,數(shù)量之比是2:3,且第一、二次進(jìn)貨價(jià)分別為每件50元、40元,總共付了6600元的貨款.
(1)求第一、二次購(gòu)進(jìn)服裝的數(shù)量分別是多少件?
(2)由于該款服裝剛推出時(shí),很受歡迎,按每件60元銷售了x件;后來,由于該服裝滯銷,為了及時(shí)處理庫(kù)存,緩解資金壓力,其剩余部分的按每件30元全部售完.當(dāng)x的值至少為多少時(shí),該服裝商店才不會(huì)虧本.
【答案】(1)第一、二次購(gòu)進(jìn)服裝的數(shù)量分別為60件與90件.(2)當(dāng)x的值至少為70時(shí),該服裝商店才不會(huì)虧本
【解析】
(1)設(shè)第一、二次購(gòu)進(jìn)服裝的數(shù)量分別為a件與b件,根據(jù)題意列出方程組,求出方程組的解得到a與b的值,即可得到結(jié)果;
(2)根據(jù)題意列出不等式,求出不等式的解集即可得到結(jié)果.
解:設(shè)第一、二次購(gòu)進(jìn)服裝的數(shù)量分別為a件與b件,由題意可得:
解得:
答:第一、二次購(gòu)進(jìn)服裝的數(shù)量分別為60件與90件.
(2)根據(jù)題意可得:
解得:;
答:當(dāng)x的值至少為70時(shí),該服裝商店才不會(huì)虧本.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有長(zhǎng)為24m的籬笆,一面利用墻(墻的最大可用長(zhǎng)度a為10m),圍成中間隔有一道籬笆的長(zhǎng)方形花圃.設(shè)花圃的寬AB為xm,面積為Sm2.
(1)求S與x的函數(shù)關(guān)系式;
(2)如果要圍成面積為45m2的花圃,AB的長(zhǎng)是多少米?
(3)能圍成面積比45 m2更大的花圃嗎?如果能,請(qǐng)求出最大面積,并說明圍法;如果不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已矩形ABCD的頂點(diǎn)A、D分別在x軸、y軸上,,則C點(diǎn)坐標(biāo)為( )
A. B. C. (3,5)D. (4,7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABD與△GDF都是等腰直角三角形,BD與DF均為斜邊(BD<DF).
(1)如圖1,B,D,F(xiàn)在同一直線上,過F作MF⊥GF于點(diǎn)F,取MF=AB,連結(jié)AM交BF于點(diǎn)H,連結(jié)GA,GM.
①求證:AH=HM;
②請(qǐng)判斷△GAM的形狀,并給予證明;
③請(qǐng)用等式表示線段AM,BD,DF的數(shù)量關(guān)系,并說明理由.
(2)如圖2,GD⊥BD,連結(jié)BF,取BF的中點(diǎn)H,連結(jié)AH并延長(zhǎng)交DF于點(diǎn)M,請(qǐng)用等式直接寫出線段AM,BD,DF的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,、、分別是菱形ABCD的兩條對(duì)角線長(zhǎng)和邊長(zhǎng),這時(shí)我們把關(guān)于的形如“”的一元二次方程稱為“菱系一元二次方程”.請(qǐng)解決下列問題:
(1)填空:①當(dāng),時(shí), .
②用含,的代數(shù)式表示值, .
(2)求證:關(guān)于的“菱系一元二次方程”必有實(shí)數(shù)根;
(3)若是“菱系一元二次方程”的一個(gè)根,且菱形的面積是25,BE是菱形ABCD的AD邊上的高,求BE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖象如圖所示,則下列結(jié)論:
① ② ③ ④ ⑤其中正確的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=ax2+c(a≠0)與x軸交于點(diǎn)A和點(diǎn)B(,0),與y軸交于點(diǎn)C(0,2),點(diǎn)P(2,t)是該拋物線上一點(diǎn).
(1)求此拋物線的解析式及t的值;
(2)若點(diǎn)D是y軸上一點(diǎn),線段PD繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°后,點(diǎn)P的對(duì)應(yīng)點(diǎn)P′恰好也落在此拋物線上,求點(diǎn)D的坐標(biāo);
(3)如圖2,直線l:y=kx+b交該拋物線于M、N兩點(diǎn),且滿足MC⊥NC,設(shè)點(diǎn)P到直線l的距離是d,求d的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,先將一張邊長(zhǎng)為4的正方形紙片ABCD沿著MN對(duì)折,然后,分別將C、D沿著折痕BF、AE對(duì)折,使得C、D兩點(diǎn)都落在折痕MN上的點(diǎn)O處,則的值為( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com