【題目】如圖(1),是兩個全等的直角三角形(直角邊分別為a,b,斜邊為c).
(1)用這樣的兩個三角形構(gòu)造成如圖(2)的圖形(B,E,C三點(diǎn)在一條直線上),利用這個圖形,求證:a2+b2=c2
(2)當(dāng)a=1,b=2時,將其中一個直角三角形放入平面直角坐標(biāo)系中(如圖(3)),使直角頂點(diǎn)與原點(diǎn)重合,兩直角邊a,b分別與x軸、y軸重合.
請在坐標(biāo)軸上找一點(diǎn)C,使△ABC為等腰三角形.
寫出一個滿足條件的在x軸上的點(diǎn)的坐標(biāo): ;
寫出一個滿足條件的在y軸上的點(diǎn)的坐標(biāo): ,這樣的點(diǎn)有 個.
【答案】(1)詳見解析;(2)(﹣1,0);(0,2+),4.
【解析】
(1)由圖知,梯形的面積等于三個直角三角形的面積之和,用字母表示出來,化簡后,即證明勾股定理;
(2)根據(jù)等腰三角形的性質(zhì)分三種情況討論即可求解.
(1)由圖可得,×(a+b)(a+b)=ab+c2+ab,
整理得=,
∴a2+2ab+b2=2ab+c2,
∴a2+b2=c2.
(2)一個滿足條件的在x軸上的點(diǎn)的坐標(biāo):(﹣1,0);
一個滿足條件的在y軸上的點(diǎn)的坐標(biāo):(0,2+ ),這樣的點(diǎn)有 4個.
故答案為:(﹣1,0);(0,2+),4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=30°,OP平分∠AOB,PD⊥OB于D,PC∥OB交OA于C,若PC=10,則PD=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯誤的是( )
A. 李老師要從包括小明在內(nèi)的四名班委中,隨機(jī)抽取2名學(xué)生參加學(xué)生會選舉,抽到小明的概率是
B. 一組數(shù)據(jù)6,8,7,8,8,9,10的眾數(shù)和中位數(shù)都是8
C. 對甲、乙兩名運(yùn)動員某個階段的比賽成績進(jìn)行分析,甲的成績數(shù)據(jù)的方差是S甲2=0.01,乙的成績數(shù)據(jù)的方差是S乙2=0.1,則在這個階段甲的成績比乙的成績穩(wěn)定
D. 一個盒子中裝有3個紅球,2個白球,這些球除顏色外都相同,從中隨機(jī)摸出一個球,記下顏色后放回,再從中隨機(jī)摸出一個球,兩次摸到相同顏色的球的概率是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中表示下面各點(diǎn):
A(0,3) B(1,-3) C(3,-5) D(-3,-5) E(3,5).連接CE,CD.
(1)A點(diǎn)到原點(diǎn)的距離是___個單位長度;B點(diǎn)到直線CD的距離是____個單位長度;
(2)將點(diǎn)C向x軸的負(fù)方向平移6個單位,它與點(diǎn)_______重合;
(3)直線CE與y軸的位置關(guān)系是_______;直線CE與x軸的位置關(guān)系是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市出租車計費(fèi)標(biāo)準(zhǔn)如下:行駛路程不超過3千米時,收費(fèi)8元;行駛路程超過3千米的部分,按每千米1.60元計費(fèi).
(1)求出租車收費(fèi)y(元)與行駛路程x(千米)之間的函數(shù)關(guān)系式;
(2)若某人一次乘出租車時,付出了車費(fèi)14.40元,求他這次乘坐了多少千米的路?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:用2輛A型車和1輛B型車裝滿貨物一次可運(yùn)貨10噸;用1輛A型車和2輛B型車裝滿貨物一次可運(yùn)貨11噸.某物流公司現(xiàn)有31噸貨物,計劃同時租用A型車輛,B型車輛,一次運(yùn)完,且恰好每輛車都裝滿貨物. 根據(jù)以上信息,解答下列問題:
(1)1輛A型車和1輛B型車都裝滿貨物一次可分別運(yùn)貨多少噸?
(2)請你幫該物流公司設(shè)計租車方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D是BC的中點(diǎn),連接AD,E,F(xiàn)分別是AD和AD延長線上的點(diǎn).且DE=DF,連接BF,CE,下列說法中:①△ABD和△ACD的面積相等;②∠BAD=∠CAD;③BF∥CE;④CE=BF,其中,正確的說法有__________(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠B=45°, AM⊥BC,垂足為M.
(1)如圖1,若AB=4,BC=7,求AC的長;
(2)如圖2, 點(diǎn)D是線段AM上一點(diǎn),MD=MC,點(diǎn)E是△ABC外一點(diǎn),CE=CA,連接ED并延長交BC于點(diǎn)F,且∠BDF=∠CEF,
求證①AC=BD;
②BF=CF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形OABC中,OA=3,AB=4,雙曲線y= (k>0)與矩形兩邊AB、BC分別交于D、E,且BD=2AD
(1)求k的值和點(diǎn)E的坐標(biāo);
(2)點(diǎn)P是線段OC上的一個動點(diǎn),是否存在點(diǎn)P,使∠APE=90°?若存在,求出此時點(diǎn)P的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com