【題目】RtABC中,∠C90°

(1)按要求尺規(guī)作圖,保留作圖痕跡

①作∠ABC平分線交ACF點(diǎn),

②作BF的垂直平分線交ABM,以MB為半徑作圓⊙M;

(2)在(1)所作圖形中,證明⊙M與邊AC相切;

(3)在(1)所作圖形中,若∠CFB=∠CBA,BC3,求⊙M的半徑.

【答案】(1)①作圖見(jiàn)解析;②作圖見(jiàn)解析;(2)證明見(jiàn)解析;(3)

【解析】

(1)①根據(jù)尺規(guī)作圖過(guò)程作∠ABC平分線交ACF點(diǎn)即可;②作BF的垂直平分線交ABM,以MB為半徑做⊙M即可;

②作BF的垂直平分線交ABM,以MB為半徑作圓⊙M與邊AC相切;

(2)在(1)所作圖形中,根據(jù)切線的判定得出FM⊥AC,即可證明⊙M與邊AC相切;

(3)在(1)所作圖形中,根據(jù)∠CFB=∠CBA,BC3,角平分線的性質(zhì),求出∠A的度數(shù),即可求⊙M的半徑.

解:(1)如圖所示①BF即為所求;

②如圖所示⊙M為所求;

2)證明:∵MBF的垂直平分線上,

MFMB

∴∠MBF=∠MFB,

又∵BF平分∠ABC

∴∠MBF=∠CBF,

∴∠CBF=∠MFB,

MFBC

∵∠C90°,

FMAC,

∴⊙M與邊AC相切;

3)∵∠CFB=∠CBA,

∴∠A=∠CBF

∴∠A=∠CBF=∠ABF,

∴∠A30°,

BC3

AB6,

設(shè)⊙M的半徑為x,

MFMBx,則AM2x

MB+AMAB,

3x6

x2,

∴⊙M的半徑為2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是由邊長(zhǎng)為1的小正方形構(gòu)成的網(wǎng)格,每個(gè)小正方形的頂點(diǎn)叫格點(diǎn),的頂點(diǎn)都在格點(diǎn)上,僅用無(wú)刻度的直尺在網(wǎng)格中畫(huà)圖(保留作圖連線痕跡),并回答問(wèn)題.

1)在的右邊找格點(diǎn),連,使平分

2)若交于,直接寫(xiě)出的值.

3)找格點(diǎn),連,使

4)在上找點(diǎn),連,使

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點(diǎn),與交于點(diǎn),與軸交于點(diǎn)軸于點(diǎn),且

1)求一次函數(shù)和反比例函數(shù)的解析式;

2)點(diǎn)為反比例函數(shù)圖象上使得四邊形為菱形的一點(diǎn),點(diǎn)軸上的一動(dòng)點(diǎn),當(dāng)最大時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為進(jìn)一步提升學(xué)生的法律素質(zhì),中學(xué)組織學(xué)生開(kāi)展《憲法》知識(shí)競(jìng)賽,該學(xué)校隨機(jī)抽取部分學(xué)生的成績(jī)并進(jìn)行統(tǒng)計(jì)分析,以了解學(xué)生的法律知識(shí)水平.根據(jù)這些學(xué)生的競(jìng)賽成績(jī)分布情況,將競(jìng)賽成績(jī)分為甲、乙、丙、丁、戊五個(gè)等級(jí).圖表如下:

等級(jí)

分?jǐn)?shù)/

頻數(shù)

各組總分/

39

2184

75

5175

120

9720

4050

21

2037

1)求的值;

2)競(jìng)賽成績(jī)的中位數(shù)落在哪個(gè)等級(jí)?

3)求這組競(jìng)賽成績(jī)的平均值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,一次函數(shù)y=kx+bkb為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點(diǎn),且與反比例函數(shù)y=n為常數(shù)且n≠0)的圖象在第二象限交于點(diǎn)CCDx軸,垂直為D,若OB=2OA=3OD=6

1)求一次函數(shù)與反比例函數(shù)的解析式;

2)求兩函數(shù)圖象的另一個(gè)交點(diǎn)坐標(biāo);

3)直接寫(xiě)出不等式;kx+b≤的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將兩個(gè)全等的直角三角形ABC和DBE按圖①方式擺放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,點(diǎn)E落在AB上,DE所在直線交AC所在直線于點(diǎn)F.

(1)求證:AF+EF=DE;

(2)若將圖①中的△DBE繞點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn)角α,且0°<α<60°,其它條件不變,請(qǐng)?jiān)趫D②中畫(huà)出變換后的圖形,并直接寫(xiě)出你在(1)中猜想的結(jié)論是否仍然成立;

(3)若將圖①中的△DBE繞點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn)角β,且60°<β<180°,其它條件不變,如圖③.你認(rèn)為(1)中猜想的結(jié)論還成立嗎?若成立,寫(xiě)出證明過(guò)程;若不成立,請(qǐng)寫(xiě)出AF、EF與DE之間的關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某產(chǎn)品每件成本10元,試銷階段每件產(chǎn)品的銷售價(jià)x(元)與產(chǎn)品的日銷售量y(件)之間的關(guān)系如圖.


1)求日銷售量y(件)與每件產(chǎn)品的銷售價(jià)x(元)之間的函數(shù)表達(dá)式;

2)當(dāng)每件產(chǎn)品的銷售價(jià)定為多少元時(shí),此時(shí)每日的銷售利潤(rùn)最多,最多是多少元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系,拋物線的圖象與軸交于、兩點(diǎn),與軸交于點(diǎn)

       

       備用圖

1)求拋物線的解析式.

2)點(diǎn)是直線上方的拋物線上一點(diǎn),連接、、,軸交于

①點(diǎn)軸上一動(dòng)點(diǎn),連接,當(dāng)以、、為頂點(diǎn)的三角形與相似時(shí),求出線段的長(zhǎng);

②點(diǎn)軸左側(cè)拋物線上一點(diǎn),過(guò)點(diǎn)作直線的垂線,垂足為,若,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)學(xué)實(shí)踐與綜合課上,某興趣小組同學(xué)用航拍無(wú)人機(jī)對(duì)某居民小區(qū)的1、2號(hào)樓進(jìn)行測(cè)高實(shí)踐,如圖為實(shí)踐時(shí)繪制的截面圖.無(wú)人機(jī)從地面點(diǎn)B垂直起飛到達(dá)點(diǎn)A處,測(cè)得1號(hào)樓頂部E的俯角為67°,測(cè)得2號(hào)樓頂部F的俯角為40°,此時(shí)航拍無(wú)人機(jī)的高度為60米,已知1號(hào)樓的高度為20米,且ECFD分別垂直地面于點(diǎn)CD,點(diǎn)BCD的中點(diǎn),求2號(hào)樓的高度.(結(jié)果精確到0.1)(參考數(shù)據(jù)sin40°≈0.64cos40°≈0.77,tan40°≈0.84sin67°≈0.92,cos67°≈0.39,tan67°≈2.36

查看答案和解析>>

同步練習(xí)冊(cè)答案