【題目】在數(shù)學(xué)實(shí)踐與綜合課上,某興趣小組同學(xué)用航拍無(wú)人機(jī)對(duì)某居民小區(qū)的1、2號(hào)樓進(jìn)行測(cè)高實(shí)踐,如圖為實(shí)踐時(shí)繪制的截面圖.無(wú)人機(jī)從地面點(diǎn)B垂直起飛到達(dá)點(diǎn)A處,測(cè)得1號(hào)樓頂部E的俯角為67°,測(cè)得2號(hào)樓頂部F的俯角為40°,此時(shí)航拍無(wú)人機(jī)的高度為60米,已知1號(hào)樓的高度為20米,且EC和FD分別垂直地面于點(diǎn)C和D,點(diǎn)B為CD的中點(diǎn),求2號(hào)樓的高度.(結(jié)果精確到0.1)(參考數(shù)據(jù)sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)
【答案】45.8米
【解析】
通過(guò)作輔助線,構(gòu)造直角三角形,利用直角三角形的邊角關(guān)系,分別求出EM,AN,進(jìn)而計(jì)算出2號(hào)樓的高度DF即可.
解:過(guò)點(diǎn)E、F分別作EM⊥AB,FN⊥AB,垂足分別為M、N,
由題意得,EC=20,∠AEM=67°,∠AFN=40°,CB=DB=EM=FN,AB=60,
∴AM=AB﹣MB=60﹣20=40,
在Rt△AEM中,
∵tan∠AEM=,
∴EM==≈16.9,
在Rt△AFN中,
∵tan∠AFN=,
∴AN=tan40°×16.9≈14.2,
∴FD=NB=AB﹣AN=60﹣14.2=45.8,
答:2號(hào)樓的高度約為45.8米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠C=90°.
(1)按要求尺規(guī)作圖,保留作圖痕跡
①作∠ABC平分線交AC于F點(diǎn),
②作BF的垂直平分線交AB于M,以MB為半徑作圓⊙M;
(2)在(1)所作圖形中,證明⊙M與邊AC相切;
(3)在(1)所作圖形中,若∠CFB=∠CBA,BC=3,求⊙M的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了提高學(xué)生身體素質(zhì),某市中小學(xué)開(kāi)展陽(yáng)光健步走活動(dòng),某數(shù)學(xué)興趣小組收集了某校名學(xué)生一天行走的步數(shù)并記錄如下:
對(duì)這個(gè)數(shù)據(jù)按組距進(jìn)行分組,并統(tǒng)計(jì)整理,繪制了如下尚不完整的統(tǒng)計(jì)圖表.
調(diào)查結(jié)果統(tǒng)計(jì)表:
組別 | 步數(shù)分組 | 頻數(shù) |
請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:
(1)填空: ,
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖.
(3)這名學(xué)生一天行走步數(shù)的眾數(shù)落在 組.
(4)根據(jù)科學(xué)研究,初中生一天的健步行走應(yīng)不少于步,若該校有名初中生,請(qǐng)你估計(jì)該校一天健步行走不少于步的學(xué)生人數(shù),并根據(jù)上述數(shù)據(jù),給校方提出合理化的建議(有利于健步行走的)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)垃圾進(jìn)行分類投放,能提高垃圾處理和再利用的效率,減少污染,保護(hù)環(huán)境.為了檢查垃圾分類的落實(shí)情況,某居委會(huì)成立了甲、乙兩個(gè)檢查組,采取隨機(jī)抽查的方式分別對(duì)轄區(qū)內(nèi)的A,B,C,D四個(gè)小區(qū)進(jìn)行檢查,并且每個(gè)小區(qū)不重復(fù)檢查.
(1)甲組抽到A小區(qū)的概率是多少;
(2)請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求甲組抽到A小區(qū),同時(shí)乙組抽到C小區(qū)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠ABC的平分線交AC于點(diǎn)E,交AD于點(diǎn)F,交CD的延長(zhǎng)線于點(diǎn)G,若AF=2FD,則的值為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D為AB邊上的一點(diǎn),以AD為直徑的⊙O交BC于點(diǎn)E,交AC于點(diǎn)F,過(guò)點(diǎn)C作CG⊥AB交AB于點(diǎn)G,交AE于點(diǎn)H,過(guò)點(diǎn)E的弦EP交AB于點(diǎn)Q(EP不是直徑),點(diǎn)Q為弦EP的中點(diǎn),連結(jié)BP,BP恰好為⊙O的切線.
(1)求證:BC是⊙O的切線.
(2)求證:=.
(3)若sin∠ABC═,AC=15,求四邊形CHQE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小剛?cè)コ匈?gòu)買畫(huà)筆,第一次花60元買了若干支A型畫(huà)筆,第二次超市推薦了B型畫(huà)筆,但B型畫(huà)筆比A型畫(huà)筆的單價(jià)貴2元,他又花100元買了相同支數(shù)的B型畫(huà)筆.
(1)超市B型畫(huà)筆單價(jià)多少元?
(2)小剛使用兩種畫(huà)筆后,決定以后使用B型畫(huà)筆,但感覺(jué)其價(jià)格稍貴,和超市溝通后,超市給出以下優(yōu)惠方案:一次購(gòu)買不超過(guò)20支,則每支B型畫(huà)筆打九折;若一次購(gòu)買超過(guò)20支,則前20支打九折,超過(guò)的部分打八折.設(shè)小剛購(gòu)買的B型畫(huà)筆x支,購(gòu)買費(fèi)用為y元,請(qǐng)寫(xiě)出y關(guān)于x的函數(shù)關(guān)系式.
(3)在(2)的優(yōu)惠方案下,若小剛計(jì)劃用270元購(gòu)買B型畫(huà)筆,則能購(gòu)買多少支B型畫(huà)筆?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與x軸相交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸相交于點(diǎn).為拋物線上一點(diǎn),橫坐標(biāo)為,且.
⑴求此拋物線的解析式;
⑵當(dāng)點(diǎn)位于軸下方時(shí),求面積的最大值;
⑶設(shè)此拋物線在點(diǎn)與點(diǎn)之間部分(含點(diǎn)和點(diǎn))最高點(diǎn)與最低點(diǎn)的縱坐標(biāo)之差為.
①求關(guān)于的函數(shù)解析式,并寫(xiě)出自變量的取值范圍;
②當(dāng)時(shí),直接寫(xiě)出的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,已知AD>AB.且AB=5.
(1)作∠BAD的平分線交BC于點(diǎn)E,在AD上截取AF=AB,連接EF;(保留作圖痕跡,不寫(xiě)作法)
(2)若四邊形ABEF的周長(zhǎng)為a,求a的值
(3)根據(jù)(2),先化簡(jiǎn)W=(a+2)2﹣(a2+1),再求W的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com