【題目】某種工業(yè)原料,甲倉庫有12噸,乙倉庫有6噸,現(xiàn)需從甲、乙兩倉庫將這種工業(yè)原料分別調(diào)往A工廠10噸,B工廠8噸,已知從甲倉庫調(diào)運1噸原料到A,B兩工廠的運費分別是40元和80元,從乙倉庫調(diào)運1噸原料到A,B兩工廠的運費分別是30元和50元.
(1)若總運費為900元,則從甲倉庫調(diào)運到A工廠的原料為多少噸?
(2)要使總運費最低,應(yīng)如何安排調(diào)運方案?
【答案】(1)甲倉庫調(diào)運到A工廠的原料為8噸;(2)從甲倉庫調(diào)運到A工廠的原料為10噸,則調(diào)往B工廠的原料2噸,乙倉庫調(diào)往A工廠原料0噸,調(diào)往B工廠原料為6噸,
【解析】
(1)設(shè)從甲倉庫調(diào)運到A工廠的原料為x噸,則調(diào)往B工廠(12﹣x)噸,乙倉庫調(diào)往A工廠(10﹣x)噸,調(diào)往B工廠[6﹣(10﹣x)]噸,再根據(jù)調(diào)動的數(shù)量乘以一噸的運費,再算出總運費即可;
(2)根據(jù)調(diào)動的原料為非負數(shù)可得,再解不等式組可得x的取值范圍,再求出最低運費即可
解:(1)設(shè)從甲倉庫調(diào)運到A工廠的原料為x噸
40x+80(12﹣x)+30(10﹣x)+50(x﹣4)=900
解得:x=8
答設(shè)從甲倉庫調(diào)運到A工廠的原料為8噸
(2)根據(jù)調(diào)動的原料為非負數(shù)可得:∴4≤x≤10
設(shè)總運費為y元,根據(jù)題意得:y=40x+80(12﹣x)+30(10﹣x)+50(x﹣4)=﹣20x+1060
∵﹣20<0∴y隨x的增大而減少
∴當x=10時,y最大
即從甲倉庫調(diào)運到A工廠的原料為10噸,則調(diào)往B工廠的原料2噸,乙倉庫調(diào)往A工廠原料0噸,調(diào)往B工廠原料為6噸.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】邊長為4的正方形AOBC在坐標系中的位置如圖所示,若OB邊保持不動,推動AOBC向右傾斜30°得四邊形DOBE,則點E的坐標為( 。
A.(5,4)B.(6,2)C.(6,3)D.(4+2,5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中,AB=AC,∠ABC =,D是BC邊上一點,以AD為邊作,使AE=AD,+=180°.
(1)直接寫出∠ADE的度數(shù)(用含的式子表示);
(2)以AB,AE為邊作平行四邊形ABFE,
①如圖2,若點F恰好落在DE上,求證:BD=CD;
②如圖3,若點F恰好落在BC上,求證:BD=CF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標系中,矩形OABC的頂點C在x軸的負半軸上,點A在y軸正半軸上,矩形OABC的面積為8.把矩形OABC沿DE翻折,使點B與點O重合,點C落在第三象限的G點處,作EH⊥x軸于H,過E點的反比例函數(shù)y=圖象恰好過DE的中點F.則k=_____,線段EH的長為:_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點G為正方形ABCD內(nèi)一點,AB=AG,∠AGB=70°,聯(lián)結(jié)DG,那么∠BGD=_____度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AD=6,E為AB的中點,將△ADE沿DE翻折得到△FDE,延長EF交BC于G,FH⊥BC,垂足為H,延長DF交BC與點M,連接BF、DG.以下結(jié)論:①∠BFD+∠ADE=180°;②△BFM為等腰三角形;③△FHB∽△EAD;④BE=2FM⑤S△BFG=2.6 ⑥sin∠EGB=;其中正確的個數(shù)是( )
A.3B.4C.5D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,線段AB是⊙O的直徑,點C在⊙O上,且∠CAB=30°,設(shè)點D是線段AC上任意一點(不含端點),連接OD,當CD+OD的最小值為9時,則⊙O的直徑AB的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小林在沒有量角器和圓規(guī)的情況下,利用刻度尺和一副三角板畫出了一個角的平分線,他的做法是這樣的:如圖,
①利用刻度尺在∠AOB的兩邊OA,OB上分別取OM=ON;
②利用兩個三角板,分別過點M,N畫OM,ON的垂線,交點為P;
③畫射線OP.則射線OP為∠AOB的平分線.
(1)請寫出射線OP為∠AOB的平分線的證明過程.
(2)請根據(jù)你的證明過程,寫出小林的畫法的依據(jù)______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知以E(3,0)為圓心,以5為半徑的⊙E與x軸交于A,B兩點,與y軸交于C點,拋物線經(jīng)過A,B,C三點,頂點為F.
(1)求A,B,C三點的坐標;
(2)求拋物線的解析式及頂點F的坐標;
(3)已知M為拋物線上一動點(不與C點重合),試探究:
①使得以A,B,M為頂點的三角形面積與△ABC的面積相等,求所有符合條件的點M的坐標;
②若探究①中的M點位于第四象限,連接M點與拋物線頂點F,試判斷直線MF與⊙E的位置關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com