【題目】小林在沒有量角器和圓規(guī)的情況下,利用刻度尺和一副三角板畫出了一個角的平分線,他的做法是這樣的:如圖,

①利用刻度尺在∠AOB的兩邊OA,OB上分別取OM=ON;

②利用兩個三角板,分別過點MNOM,ON的垂線,交點為P;

③畫射線OP.則射線OP為∠AOB的平分線.

(1)請寫出射線OP為∠AOB的平分線的證明過程.

(2)請根據(jù)你的證明過程,寫出小林的畫法的依據(jù)______.

【答案】1)見解析;(2HL

【解析】

(1)根據(jù)HL證明RtOPMRtOPN即可;

(2)根據(jù)全等三角形的判定方法即可解決問題.

解:(1)在RtOPMRtOPN中,

RtOPMRtOPNHL),

∴∠POM=∠PON

OP為∠AOB的平分線;

2)由(1)可知:小林的畫法的依據(jù)是HL,

故答案為:HL

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,拋物線y軸的交點為A,與x軸的正半軸分別交于點Bb,0),Cc,0).

(1)當b=1時,求拋物線相應(yīng)的函數(shù)表達式;

(2)當b=1時,如圖,Et,0)是線段BC上的一動點,過點E作平行于y軸的直線l與拋物線的交點為P.求△APC面積的最大值;

(3)當c =b+ n.時,且n為正整數(shù).線段BC(包括端點)上有且只有五個點的橫坐標是整數(shù),求b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種工業(yè)原料,甲倉庫有12噸,乙倉庫有6噸,現(xiàn)需從甲、乙兩倉庫將這種工業(yè)原料分別調(diào)往A工廠10噸,B工廠8噸,已知從甲倉庫調(diào)運1噸原料到A,B兩工廠的運費分別是40元和80元,從乙倉庫調(diào)運1噸原料到A,B兩工廠的運費分別是30元和50元.

1)若總運費為900元,則從甲倉庫調(diào)運到A工廠的原料為多少噸?

2)要使總運費最低,應(yīng)如何安排調(diào)運方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,AC、BD相交于點O,EF是對角線BD上的點,且BE=DF,連接AECE、CF、AF

1)求證:AE=CF;

2)若平行四邊形ABCD的面積是12,OCF的面積是2,求ADF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們把有兩條邊和其中一邊的對角對應(yīng)相等的兩個三角形叫做同族三角形,如圖1,在△ABC△ABD中,AB=AB,AC=AD∠B=∠B,則△ABC△ABD同族三角形

1)如圖2,四邊形ABCD內(nèi)接于圓,點C是弧BD的中點,求證:△ABC△ACD是同族三角形;

2)如圖3,ABC內(nèi)接于⊙O,⊙O的半徑為AB=6,∠BAC=30°,求AC的長;

3)如圖3,在(2)的條件下,若點D在⊙O上,ADCABC是非全等的同族三角形,ADCD,求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線My=ax2-4ax+a-1a0)與x軸交于AB兩點(點A在點B左側(cè)),拋物線的頂點為D

1)拋物線M的對稱軸是直線______;

2)當AB=2時,求拋物線M的函數(shù)表達式以及頂點D的坐標;

3)在(2)的條件下,直線ly=kx+bk0)經(jīng)過拋物線的頂點D,直線y=n與拋物線M有兩個公共點,它們的橫坐標分別記為x1x2,直線y=n與直線l的交點的橫坐標記為x3x34),若當-2n≤-1時,總有x1-x3x3-x20,請結(jié)合函數(shù)的圖象,直接寫出k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若矩形的一個短邊與長邊的比值為,(黃金分割數(shù)),我們把這樣的矩形叫做黃金矩形

(1)操作:請你在如圖所示的黃金矩形ABCD(AB>AD)中,以短邊AD為一邊作正方形AEFD.

(2)探究:在(1)中的四邊形EBCF是不是黃金矩形?若是,請予以證明;若不是,請說明理由.

(3)歸納:通過上述操作及探究,請概括出具體有一般性的結(jié)論(不需證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù) yax2+bx+ca≠0)的圖象如圖所示,對稱軸是直線 x=1,下列結(jié)論:ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0. 其中正確的是(

A.①④B.②④C.①②③D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線經(jīng)過點、、

1)求拋物線的解析式;

2)若與拋物線的對稱軸交于點,以為圓心,長為半徑作圓,軸的位置關(guān)系如何?請說明理由.

3)過點的切線,交軸于點,請求出直線的解析式及點坐標.

查看答案和解析>>

同步練習(xí)冊答案