【題目】如圖1,在中,AB=AC∠ABC =,DBC邊上一點,以AD為邊作,使AE=AD+=180°

1)直接寫出∠ADE的度數(shù)(用含的式子表示);

2)以ABAE為邊作平行四邊形ABFE,

如圖2,若點F恰好落在DE上,求證:BD=CD

如圖3,若點F恰好落在BC上,求證:BD=CF

【答案】1;(2)證明見解析.

【解析】

試題(1)由在△ABC中,AB=AC,∠ABC=α,可求得∠BAC=180°-2α,又由AE=AD,∠DAE+∠BAC=180°,可求得∠DAE=2α,繼而求得∠ADE的度數(shù);

2由四邊形ABFE是平行四邊形,易得∠EDC=∠ABC=α,則可得∠ADC=∠ADE+∠EDC=90°,證得AD⊥BC,又由AB=AC,根據(jù)三線合一的性質(zhì),即可證得結(jié)論;

由在△ABC中,AB=AC,∠ABC=α,可得∠B=∠C=α,四邊形ABFE是平行四邊形,可得AE∥BFAE=BF.即可證得:∠EAC=∠C=α,又由(1)可證得AD=CD,又由AD=AE=BF,證得結(jié)論.

試題解析:(1∠ADE =

2證明:四邊形ABFE是平行四邊形,

∴AB∥EF

由(1)知,∠ADE =,

∴AD⊥BC

∵AB=AC,

∴BD=CD

證明:

∵AB=AC,∠ABC =

四邊形ABFE是平行四邊形,

∴AE∥BF,AE=BF

由(1)知,,

∴AD=CD

∵AD=AE=BF,

∴BF=CD

∴BD=CF

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某班同學組織春游活動,到超市選購A, B兩種飲料,若購買6A種飲料, 4B種飲料需花費39元,購買20A種飲料和30B種飲料需花費180元。

(1)購買A, B兩種飲料每瓶各多少元?

(2)實際購買時,恰好超市進行促銷活動,如果一次性購買 A種飲料數(shù)量超過20瓶,則超出部分的價格享受八折優(yōu)惠,B種飲料價格保持不變,若購買B種飲料的數(shù)量是A種飲料數(shù)量的2倍還多10瓶,且總費用不超過320元則最多可購買A種飲料多少瓶?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,A(-1,5)B(1,0),C(4,3)

1)在圖中畫出△ABC關于y軸對稱的圖形△A1B1C1;(其中A1、B1、C1分別是A、B、C的對應點,不寫畫法.)

2)寫出點A1B1、C1的坐標;

3)求出△A1B1C1的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中學生騎電動車上學給交通安全帶來隱患,為了解某中學2 500個學生家長對“中學生騎電動車上學”的態(tài)度,從中隨機調(diào)查400個家長,結(jié)果有360個家長持反對態(tài)度,則下列說法正確的是( )

A. 調(diào)查方式是普查 B. 該校只有360個家長持反對態(tài)度

C. 樣本是360個家長 D. 該校約有90%的家長持反對態(tài)度

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線ABCD相交于點O,過點O作兩條射線OMON,且AOMCON90°

(1)OC平分AOM,求AOD的度數(shù).

(2)∠1BOC,求AOCMOD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形的邊長是4,的平分線交于點,若點、分別是上的動點,則的最小值是__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與實踐

操作發(fā)現(xiàn)

如圖,在平面直角坐標系中,已知線段兩端點的坐標分別為,點的坐標為,將線段沿方向平移,平移的距離為的長度.

1)畫出平移后的線段,直接寫出點對應點的坐標;

2)連接,,,已知平分,求證:;

拓展探索

3)若點為線段上一動點(不含端點),連接,,試猜想,之間的關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在相鄰兩點距離為1的點陣紙上(左右相鄰或上下相鄰的兩點之間的距離都是1個單位長度),三個頂點都在點陣上的三角形叫做點陣三角形,請按要求完成下列操作:

1)將點陣ABC水平向右平移4個單位長度,再豎直向上平移5個單位長度,畫出平移后的A1B1C1

2)連接AA1、BB1,則線段AA1、BB1的位置關系為  、數(shù)量關系為  .估計線段AA1的長度大約在  AA1  單位長度:(填寫兩個相鄰整數(shù));

3)畫出ABCAB上的高CD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】養(yǎng)成良好的早鍛煉習慣,對學生的學習和生活都非常有益,某中學為了了解七年級學生的早鍛煉情況,校政教處在七年級隨機抽取了部分學生,并對這些學生通常情況下一天的早鍛煉時間x(分鐘)進行了調(diào)查.現(xiàn)把調(diào)查結(jié)果分成A、B、C、D四組,如表所示,同時,將調(diào)查結(jié)果繪制成下面兩幅不完整的統(tǒng)計圖.

分組

A

B

C

D

x(分鐘)的范圍

0≤x10

10≤x20

20≤x30

30≤x40

請你根據(jù)以上提供的信息,解答下列問題:

1)補全頻數(shù)分布直方圖;

2)所抽取的七年級學生早鍛煉時間的中位數(shù)落在______組內(nèi)(填ABCD);

3)已知該校七年級共有1200名學生,請你估計這個年級學生中約有多少人一天早鍛煉的時間不少于20分鐘.(早鍛煉:指學生在早晨700740之間的鍛煉)

查看答案和解析>>

同步練習冊答案