【題目】如圖,在△ABC中,以AC為直徑的⊙O交AB于點(diǎn)D,連接CD,∠BCD=∠A.
(1)求證:BC是⊙O的切線;
(2)若BC=5,BD=3,求點(diǎn)O到CD的距離.
【答案】(1)見解析;(2)OE=
【解析】
(1)根據(jù)圓周角定理得到∠ADC=90°,得到∠A+∠ACD=90°,求得∠ACB=90°,于是得到結(jié)論;
(2)過O作OE⊥CD于E,根據(jù)相似三角形的性質(zhì)得到,根據(jù)垂徑定理得到E為CD的中點(diǎn),根據(jù)三角形的中位線的性質(zhì)即可得到結(jié)論.
(1)證明:∵AC是⊙O的直徑,
∴∠ADC=90°
∠A+∠ACD=90°,
∵∠BCD=∠A,
∴∠BCD+∠ACD=90°
∴∠ACB=90°,
∴OC⊥BC,
∵OC是⊙O的半徑,
∴BC是⊙O的切線.
(2)解:過點(diǎn)O作OE⊥CD于點(diǎn)E,如圖所示
在Rt△BCD中,
∵BC=5,BD=3,
∴CD=4
∵∠ADC=∠CDB=90°,∠BCD=∠A.
∴Rt△BDC∽Rt△CDA.
∴,
∴
∵OE⊥CD,
∴E為CD的中點(diǎn)
又∵點(diǎn)O是AC的中點(diǎn),
∴OE=
∴點(diǎn)O到CD的距離是
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC,以AB為直徑的圓O交BC于點(diǎn)D,過點(diǎn)C作CF∥AB,與⊙O的切線BE交于點(diǎn)E,連接DE.
(1)求證:BD=CD;
(2)求證:△CAB∽△CDE;
(3)設(shè)△ABC的面積為S1,△CDE的面積為S2,直徑AB的長為x,若∠ABC=30°,S1、S2 滿足S1+S2=,試求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解初中學(xué)生每天在校體育活動的時(shí)間(單位:h),隨機(jī)調(diào)査了該校的部分初中學(xué)生.根據(jù)調(diào)查結(jié)果,繪制出如下的統(tǒng)計(jì)圖①和圖②.請根據(jù)相關(guān)信息,解答下列問題:
(Ⅰ)本次接受調(diào)查的初中學(xué)生人數(shù)為___________,圖①中m的值為_____________;
(Ⅱ)求統(tǒng)計(jì)的這組每天在校體育活動時(shí)間數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(Ⅲ)根據(jù)統(tǒng)計(jì)的這組每天在校體育活動時(shí)間的樣本數(shù)據(jù),若該校共有800名初中學(xué)生,估計(jì)該校每天在校體育活動時(shí)間大于1h的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程解應(yīng)用題:
某商場用8萬元購進(jìn)一批新款襯衫,上架后很快銷售一空,商場又緊急購進(jìn)第二批這種襯衫,數(shù)量是第一次的2倍,但進(jìn)價(jià)漲了4元/件,結(jié)果共用去17.6萬元.
(1)該商場第一批購進(jìn)襯衫多少件?
(2)商場銷售這種襯衫時(shí),每件定價(jià)都是58元,剩至150件時(shí)按八折出售,全部售完.售完這兩批襯衫,商場共盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“我為祖國點(diǎn)贊”征文活動中,學(xué)校計(jì)劃對獲得一、二等獎的學(xué)生分別獎勵(lì)一支鋼筆,一本筆記本.已知購買2支鋼筆和3個(gè)筆記本共38元,購買4支鋼筆和5個(gè)筆記本共70元.
(1)鋼筆、筆記本的單價(jià)分別為多少元?
(2)經(jīng)與商家協(xié)商,購買鋼筆超過30支時(shí),每增加一支,單價(jià)降低0.1元;超過50支,均按購買50支的單價(jià)銷售.筆記本一律按原價(jià)銷售.學(xué)校計(jì)劃獎勵(lì)一、二等獎學(xué)生共計(jì)100人,其中一等獎的人數(shù)不少于30人,且不超過60人,這次獎勵(lì)一等學(xué)生多少人時(shí),購買獎品金額最少,最少為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 甲、乙兩名同學(xué)參加少年科技創(chuàng)新選拔賽,六次比賽的成績?nèi)缦拢?/span>
甲:87 93 88 93 89 90
乙:85 90 90 96 89 a
(1)甲同學(xué)成績的中位數(shù)是 ;
(2)若甲、乙的平均成績相同,則a= ;
(3)已知乙的方差是,如果要選派一名發(fā)揮穩(wěn)定的同學(xué)參加比賽,應(yīng)該選誰?說明理由.(方差公式:S2=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】制作一種產(chǎn)品,需先將材料加熱達(dá)到60 ℃后,再進(jìn)行操作.設(shè)該材料溫度為y(℃),從加熱開始計(jì)算的時(shí)間為x(min).據(jù)了解,當(dāng)該材料加熱時(shí),溫度y與時(shí)間x成一次函數(shù)關(guān)系;停止加熱進(jìn)行操作時(shí),溫度y與時(shí)間x成反比例關(guān)系(如圖).已知該材料在操作加熱前的溫度為15 ℃,加熱5分鐘后溫度達(dá)到60 ℃.
(1)分別求出將材料加熱和停止加熱進(jìn)行操作時(shí),y與x的函數(shù)關(guān)系式;
(2)根據(jù)工藝要求,當(dāng)材料的溫度低于15 ℃時(shí),須停止操作,那么從開始加熱到停止操作,共經(jīng)歷了多少時(shí)間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0)其部分圖象如圖所示,下列結(jié)論:①b2﹣4ac<0;②方程ax2+bx+c的兩個(gè)根是x1=﹣1,x2=3; ③2a+b=0,④當(dāng)y>0時(shí),x的取值范圍是﹣1<x<3:⑤當(dāng)x>0,y隨x增大而減小,其中結(jié)論正確的序號是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在ABCD中,AE⊥BC于E,E恰為BC的中點(diǎn).tanB=2.
(1)求證:AD=AE;
(2)如圖2.點(diǎn)P在BE上,作EF⊥DP于點(diǎn)F,連結(jié)AF.線段DF、EF與AF之間有怎樣的數(shù)量關(guān)系?并說明理由;
(3)請你在圖3中畫圖探究:當(dāng)P為射線EC,上任意一點(diǎn)(P不與點(diǎn)E重合)時(shí),作EF⊥DP于點(diǎn)F,連結(jié)AF,線段DF、EF與AF之間有怎樣的數(shù)量關(guān)系?請?jiān)趫D3中補(bǔ)全圖形,直接寫出結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com