【題目】制作一種產(chǎn)品,需先將材料加熱達到60 ℃后,再進行操作.設該材料溫度為y(℃),從加熱開始計算的時間為x(min).據(jù)了解,當該材料加熱時,溫度y與時間x成一次函數(shù)關系;停止加熱進行操作時,溫度y與時間x成反比例關系(如圖).已知該材料在操作加熱前的溫度為15 ℃,加熱5分鐘后溫度達到60 ℃.
(1)分別求出將材料加熱和停止加熱進行操作時,y與x的函數(shù)關系式;
(2)根據(jù)工藝要求,當材料的溫度低于15 ℃時,須停止操作,那么從開始加熱到停止操作,共經(jīng)歷了多少時間?
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC,垂足為D,點E在AB上,EF⊥BC,垂足為F.
(1)AD與EF平行嗎?為什么?
(2)如果∠1=∠2,且∠3=115°,求∠BAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC內(nèi)接于⊙P,AB是⊙P的直徑,A(﹣1,0)C(3,2 ),BC的延長線交y軸于點D,點F是y軸上的一動點,連接FC并延長交x軸于點E.
(1)求⊙P的半徑;
(2)當∠A=∠DCF時,求證:CE是⊙P的切線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(7分)如圖,正比例函數(shù)的圖象與反比例函數(shù) 在第一象限
的圖象交于點,過點作軸的垂線,垂足為,已知的面積為1.
(1)求反比例函數(shù)的解析式;
(2)如果為反比例函數(shù)在第一象限圖象上的點(點與點不重合),且點的橫坐標為1,在軸上求一點,使最小.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】實驗中學現(xiàn)有學生2870人,學校為了進一步豐富學生課余生活,擬調查各興趣小組活動情況,為此校學生會委托小容、小易進行一次隨機抽樣調查.根據(jù)采集到的數(shù)據(jù),小容繪制的統(tǒng)計圖1,小易繪制的統(tǒng)計圖2(不完整)如下: 請你根據(jù)統(tǒng)計圖1、2中提供的信息,
解答下列問題:
(1)寫出2條有價值信息(不包括下面要計算的信息);
(2)這次抽樣調查的樣本容量是多少?在圖2中,請將小易畫的統(tǒng)計圖中的“體育”部分的圖形補充完整;
(3)愛好“書畫”的人數(shù)占被調查人數(shù)的百分數(shù)是多少?估計實驗中學現(xiàn)有的學生中,有多少人愛好“書畫”?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠AOB=20°,∠AOE=86°,OB平分∠AOC,OD平分∠COE.
(1)∠COD的度數(shù)是______;
(2)若以O為觀察中心,OA為正東方向,射線OD在什么位置?
(3)若以OA為鐘面上的時針,OD為分針,且OA正好在“時刻3”的下方不遠,求出此時的時刻.(結果精確到分鐘)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,點E,F(xiàn)分別在BC,CD上,將△ABE沿AE折疊,使點B落在AC上的點B′處,又將△CEF沿EF折疊,使點C落在直線EB′與AD的交點C′處,DF= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,∠A0B=420,點P為∠A0B內(nèi)一點,分別作出P點關于OA、OB的對稱點P1,P2,連接P1P2交OA于M,交OB于N,P1P2=15,則△PMN的周長為________,∠MPN ________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】江南農(nóng)場收割小麥,已知1臺大型收割機和3臺小型收割機1小時可以收割小麥1.4公頃,2臺大型收割機和5臺小型收割機1小時可以收割小麥2.5公頃.
(1)每臺大型收割機和每臺小型收割機1小時收割小麥各多少公頃?
(2)大型收割機每小時費用為300元,小型收割機每小時費用為200元,兩種型號的收割機一共有10臺,要求2小時完成8公頃小麥的收割任務,且總費用不超過5400元,有幾種方案?請指出費用最低的一種方案,并求出相應的費用.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com