【題目】將一副三角尺(在中,,,在中,,)如圖擺放,點為的中點,交于點,經(jīng)過點,將繞點順時針方向旋轉(),交于點,交于點,則的值為( )
A. B. C. D.
【答案】C
【解析】
先根據(jù)直角三角形斜邊上的中線性質得CD=AD=DB,則∠ACD=∠A=30°,∠BCD=∠B=60°,由于∠EDF=90°,可利用互余得∠CPD=60°,再根據(jù)旋轉的性質得∠PDM=∠CDN=α,于是可判斷△PDM∽△CDN,得到=,然后在Rt△PCD中利用正切的定義得到tan∠PCD=tan30°=,于是可得=.
∵點D為斜邊AB的中點,
∴CD=AD=DB,
∴∠ACD=∠A=30°,∠BCD=∠B=60°,
∵∠EDF=90°,
∴∠CPD=60°,
∴∠MPD=∠NCD,
∵△EDF繞點D順時針方向旋轉α(0°<α<60°),
∴∠PDM=∠CDN=α,
∴△PDM∽△CDN,
∴=,
在Rt△PCD中,∵tan∠PCD=tan30°=,
∴=tan30°=.
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】為宣傳6月6日世界海洋日,某校九年級舉行了主題為“珍惜海洋資源,保護海洋生物多樣性”的知識競賽活動.為了解全年級500名學生此次競賽成績(百分制)的情況,隨機抽取了部分參賽學生的成績,整理并繪制出如下不完整的統(tǒng)計表(表1)和統(tǒng)計圖(如圖).請根據(jù)圖表信息解答以下問題:
(1)本次調查一共隨機抽取了_____個參賽學生的成績;
(2)表1中a=_____;
(3)所抽取的參賽學生的成績的中位數(shù)落在的“組別”是_____;
(4)請你估計,該校九年級競賽成績達到80分以上(含80分)的學生約有_____人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,,,動點從點出發(fā),沿方向勻速運動,速度為;同時,動點從點出發(fā),沿方向勻速運動,速度為;當一個點停止運動,另一個點也停止運動.設點,運動的時間是.過點作于點,連接,.
(1)為何值時,?
(2)設四邊形的面積為,試求出與之間的關系式;
(3)是否存在某一時刻,使得若存在,求出的值;若不存在,請說明理由;
(4)當為何值時,?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題滿分10分)(1)問題發(fā)現(xiàn)
如圖1,△ACB和△DCE均為等邊三角形,點A、D、E在同一直線上,連接BE,
填空:①∠AEB的度數(shù)為 ;
②線段AD、BE之間的數(shù)量關系是 .
(2)拓展探究
如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=900, 點A、D、E在同一直線上,CM為△DCE中DE邊上的高,連接BE.請判斷∠AEB的度數(shù)及線段CM、AE、BE之間的數(shù)量關系,并說明理由.
(3)解決問題如圖3,在正方形ABCD中,CD=.若點P滿足PD=1,且∠BPD=900,請直接寫出點A到BP的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】新春佳節(jié),電子鞭炮因其安全、無污染開始走俏.某商店經(jīng)銷一種電子鞭炮,已知這種電子鞭炮的成本價為每盒80元,市場調查發(fā)現(xiàn),該種電子鞭炮每天的銷售量y(盒)與銷售單價x(元)有如下關系:y=﹣2x+320(80≤x≤160).設這種電子鞭炮每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)關系式;
(2)該種電子鞭炮銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?
(3)該商店銷售這種電子鞭炮要想每天獲得2400元的銷售利潤,又想買得快.那么銷售單價應定為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠設計了一款成本為20元/件的工藝品投放市場進行試銷,經(jīng)過調查,得到如下數(shù)據(jù):
銷售單價(元/件) | … | 30 | 40 | 50 | 60 | … |
每天銷售量(件) | … | 500 | 400 | 300 | 200 | … |
(1)研究發(fā)現(xiàn),每天銷售量與單價滿足一次函數(shù)關系,求出與的關系式;
(2)當?shù)匚飪r部門規(guī)定,該工藝品銷售單價最高不能超過45元/件,那么銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤8000元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是一張周長為18cm的三角形紙片,BC=5cm,⊙O是它的內切圓,小明用剪刀在⊙O的右側沿著與⊙O相切的任意一條直線剪下△AMN,則剪下的三角形的周長為( )
A.B.C.D.隨直線的變化而變化
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,連接BD,且BD=CD,過點A作AM⊥BD于點M,過點D作DN⊥AB于點N,DN=3,在DB的延長線上取一點P,滿足∠ABD=∠MAP+∠PAB,則AP=( 。
A.4.5B.5.5C.6D.6.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)(學習心得)于彤同學在學習完“圓”這一章內容后,感覺到一些幾何問題如果添加輔助圓,運用圓的知識解決,可以使問題變得非常容易.例如:如圖1,在中,,是外一點,且,求的度數(shù).若以點為圓心,為半徑作輔助,則、必在上,是的圓心角,而是圓周角,從而可容易得到=________.
(2)(問題解決)如圖2,在四邊形中,,,求的度數(shù).
(3)(問題拓展)如圖3,是正方形的邊上兩個動點,滿足.連接交于點,連接交于點,連接交于點,若正方形的邊長為2,則線段長度的最小值是_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com