【題目】新春佳節(jié),電子鞭炮因其安全、無污染開始走俏.某商店經(jīng)銷一種電子鞭炮,已知這種電子鞭炮的成本價為每盒80元,市場調(diào)查發(fā)現(xiàn),該種電子鞭炮每天的銷售量y(盒)與銷售單價x(元)有如下關系:y=﹣2x+320(80≤x≤160).設這種電子鞭炮每天的銷售利潤為w元.

(1)求wx之間的函數(shù)關系式;

(2)該種電子鞭炮銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?

(3)該商店銷售這種電子鞭炮要想每天獲得2400元的銷售利潤,又想買得快.那么銷售單價應定為多少元?

【答案】(1)w=﹣2x2+480x﹣25600;(2)銷售單價定為120元時,每天銷售利潤最大,最大銷售利潤3200元(3)銷售單價應定為100元

【解析】試題分析:(1)用每件的利潤乘以銷售量即可得到每天的銷售利潤,即 然后化為一般式即可;
(2)把(1)中的解析式進行配方得到頂點式然后根據(jù)二次函數(shù)的最值問題求解;
(3)求所對應的自變量的值,即解方程然后檢驗即可.

試題解析:(1)

wx的函數(shù)關系式為:

(2)

∴當時,w有最大值.w最大值為3200.

答:銷售單價定為120元時,每天銷售利潤最大,最大銷售利潤3200元.

(3)當時,

解得:

∵想買得快,

不符合題意,應舍去.

答:銷售單價應定為100元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】問題情境

1)如圖1,已知ABCD,∠PBA125°,∠PCD155°,求∠BPC的度數(shù).

佩佩同學的思路:過點PPGAB,進而PGCD,由平行線的性質(zhì)來求∠BPC,求得∠BPC   

問題遷移

2)圖2.圖3均是由一塊三角板和一把直尺拼成的圖形,三角板的兩直角邊與直尺的兩邊重合,∠ACB90°DFCG,ABFD相交于點E,有一動點P在邊BC上運動,連接PEPA,記∠PED=∠α,∠PAC=∠β

①如圖2,當點PC,D兩點之間運動時,請直接寫出∠APE與∠α,∠β之間的數(shù)量關系;

②如圖3,當點PB,D兩點之間運動時,∠APE與∠α,∠β之間有何數(shù)量關系?請判斷并說明理由;

拓展延伸

3)當點PC,D兩點之間運動時,若∠PED,∠PAC的角平分線EN,AN相交于點N,請直接寫出∠ANE與∠α,∠β之間的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校八年級甲,乙兩班各有名學生,為了解這兩個班學生身體素質(zhì)情況,進行了抽樣調(diào)查.從這兩個班各隨機抽取名學生進行身體素質(zhì)測試,測試成績?nèi)缦拢?/span>

甲班

乙班

整理上面數(shù)據(jù),得到如下統(tǒng)計表:

樣本數(shù)據(jù)的平均數(shù)、眾數(shù).中位數(shù)如下表所示:

根據(jù)以上信息,解答下列問題:

1)求表中的值

2)表中的值為( )

3)若規(guī)定測試成績在分以上(含分)的學生身體素質(zhì)為優(yōu)秀,請估計乙班名學生中身體素質(zhì)為優(yōu)秀的學生的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在學習反比例函數(shù)的圖像時,他的老師要求同學們根據(jù)“探索一次函數(shù) 的圖像”的基本步驟,在紙上逐步探索函數(shù)的圖像,并且在黑板上寫出4個點的坐標: , ,

⑴ 在A、BC、D四個點中,任取一個點,這個點既在直線又在雙曲線上的概率是多少?

⑵ 小明從A、B、C、D四個點中任取兩個點進行描點,求兩點都落在雙曲線上的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,長方形的邊在數(shù)軸上,為原點,長方形的面積為12,邊的長為3.

1)數(shù)軸上點表示的數(shù)為________.

2)將長方形沿數(shù)軸水平移動,移動后的長方形記為,設長方形移動的距離為,移動后的長方形與原長方形重疊部分的面積記為.

①當等于原長方形面積的時,則點的移動距離_______,此時數(shù)軸上點表示的數(shù)為_______.

為線段的中點,點在線段上,且當點所表示的數(shù)互為相反數(shù)時,則的值為_______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,甲、乙兩只捕撈船同時從A港出海捕魚,甲船以每小時15千米的速度沿西偏北30°方向前進,乙船以每小時15千米的速度沿東北方向前進,甲船航行2小時到達C處,此時甲船發(fā)現(xiàn)漁具丟在乙船上,于是甲船快速(勻速)沿北偏東75°的方向追趕,結果兩船在B處相遇.

(1)甲船從C處追趕上乙船用了多少時間?

(2)甲船追趕乙船的速度是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,菱形ABCD,AB=4,∠ADC=120o,連接對角線AC、BD交于點O,

(1)如圖2,將△AOD沿DB平移,使點D與點O重合,求平移后的△ABO與菱形ABCD重合部分的面積.

(2)如圖3,將△ABO繞點O逆時針旋轉(zhuǎn)交AB于點E,交BC于點F,

①求證:BE′+BF=2,

②求出四邊形OEBF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖A、O、E三點在同一條直線上,∠AOB=∠COD90°,觀察圖形后有以下四個結論,其中正確的結論是(  )

A.BOC=∠AOC=∠BOD

B.圖中小于平角的角有6

C.BOC與∠AOD互補

D.BOD和∠AOC互余

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個有進水管和一個出水管的容器,每分鐘的進水量和出水量都是常數(shù).從某時刻開始的4分鐘內(nèi)只進水不出水,在隨后的8分鐘內(nèi)既進水又出水.如圖表示的是容器中的水量y(升)與時間t(分鐘)的圖象.

1)當4≤t≤12時,求y關于t的函數(shù)解析式;

2)當t為何值時,y=27?

3)求每分鐘進水、出水各是多少升?

查看答案和解析>>

同步練習冊答案