【題目】如圖所示,矩形OABC的鄰邊OA、OC分別與xy軸重合,矩形OABC的對(duì)稱中心P(4,3),點(diǎn)QOA以每秒1個(gè)單位速度運(yùn)動(dòng),點(diǎn)MCB以每秒2個(gè)單位速度運(yùn)動(dòng),點(diǎn)NBC以每秒2個(gè)單位速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,三點(diǎn)同時(shí)出發(fā),當(dāng)一點(diǎn)到達(dá)終點(diǎn)時(shí)同時(shí)停止.

1)根據(jù)題意,可得點(diǎn)B坐標(biāo)為__________,AC=_________;

2)求點(diǎn)Q運(yùn)動(dòng)幾秒時(shí),△PCQ周長(zhǎng)最小?

3)在點(diǎn)MN、Q的運(yùn)動(dòng)過程中,能否使以點(diǎn)O、Q、M、N為頂點(diǎn)的四邊形是平行四邊形?若能,請(qǐng)求出t值;若不能,請(qǐng)說明理由.

【答案】110 2 (3)

【解析】

1)根據(jù)四邊形OABC為矩形,矩形OABC的對(duì)稱中心P(43),即可得到B的坐標(biāo),再結(jié)合勾股定理可得AC的長(zhǎng).

(2)首先根據(jù)題意可得△PCQ周長(zhǎng)等于CP、CQ、PQ的線段之和,而CP是定值,進(jìn)而只要CQ和PQ的和最小即可.

(3)假設(shè)能,設(shè)出t值,利用MN=OQ,計(jì)算出t值即可.

1)根據(jù)四邊形OABC為矩形,矩形OABC的對(duì)稱中心P(4,3)

可得B點(diǎn)的坐標(biāo)為(8,6)

根據(jù)勾股定理可得

2)設(shè)點(diǎn)Q運(yùn)動(dòng)t秒時(shí),△PCQ周長(zhǎng)最小

根據(jù)題意可得

要使△PCQ周長(zhǎng)最小,則必須CQ+PQ最短,過x軸作P點(diǎn)的對(duì)稱點(diǎn)P’

所以可得C、P’、Q在一條直線上

C(0,6),(4,-3)

設(shè)直線方程為

因此,C所在的直線為

所以Q點(diǎn)的坐標(biāo)為( ,0)

所以O(shè)Q=

因此t=

(3)根據(jù)題意要使點(diǎn)OQ、M、N為頂點(diǎn)的四邊形是平行四邊形

OQ=MN

OQ=t

MN=8-2t-2t=8-4t或MN=2t+2t-8=4t-8

所以t=8-4t或t=4t-8

所以可得t=t=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)銷售一種西裝和領(lǐng)帶,西裝每套定價(jià)400元,領(lǐng)帶每條定價(jià)50.國(guó)慶節(jié)期間商場(chǎng)決定開展促銷活動(dòng),活動(dòng)期間向客戶提供兩種優(yōu)惠方案, 兩種優(yōu)惠方案可以任意選擇:方案一:買一套西裝送一條領(lǐng)帶;方案二:西裝和領(lǐng)帶都按定價(jià)的90%付款.

現(xiàn)某客戶要到該商場(chǎng)購(gòu)買西裝20套,領(lǐng)帶x.

1)若該客戶按方案一購(gòu)買,需付款 元(用含x的式子表示),

若該客戶按方案二購(gòu)買,需付款 元(用含x的式子表示)

2)若,通過計(jì)算說明此時(shí)按哪種方案購(gòu)買較為合算;

3)當(dāng)時(shí),你能給出一種更為省錢的購(gòu)買方法嗎?試寫出你的購(gòu)買方法和所需費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點(diǎn)OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OEAB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得的長(zhǎng),然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD

OEAB,

∴∠COE=CAD,EOD=ODA

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB,

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,∠ABC90°,ABBC,三角形的頂點(diǎn)在相互平行的三條直線l1,l2,l3上,且l1、l2之間的距離為2l2、l3之間的距離為3,則AC的長(zhǎng)是_________;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在圖1至圖3,直線MN與線段AB相交于點(diǎn)O,∠1=∠2=45°.

(1)如圖1,AO=OB,請(qǐng)寫出AOBD的數(shù)量關(guān)系和位置關(guān)系;

(2)將圖1中的MN繞點(diǎn)O順時(shí)針旋轉(zhuǎn)得到圖2,其中AO=OB.求證AC=BD,ACBD

(3)將圖2中的OB拉長(zhǎng)為AOk倍得到圖3,的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列定義一種關(guān)于n的運(yùn)算:①當(dāng)n是奇數(shù)時(shí),結(jié)果為3n+5②當(dāng)n為偶數(shù)時(shí),結(jié)果是(其中k是使是奇數(shù)的正整數(shù)),運(yùn)算重復(fù)進(jìn)行,如:取n26,則26134411……若n449,則第449次運(yùn)算的結(jié)果是(  )

A.1B.2C.7D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸、軸分別相交于.點(diǎn)的坐標(biāo)為,點(diǎn)是線段上的一點(diǎn).

1)求的值;(2)若的面積為2,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:如圖1,與直線都相切.不論如何轉(zhuǎn)動(dòng),直線之間的距離始終保持不變(等于的半徑).我們把具有這一特性的圖形稱為等寬曲線.圖2是利用圓的這一特性的例子.將等直徑的圓棍放在物體下面,通過圓棍滾動(dòng),用較小的力就可以推動(dòng)物體前進(jìn).據(jù)說,古埃及就是利用只有的方法將巨石推到金字塔頂?shù)?

拓展應(yīng)用:如圖3所示的弧三角形(也稱為萊洛三角形)也是等寬曲線.如圖4,夾在平行線之間的萊洛三角形無論怎么滾動(dòng),平行線間的距離始終不變.若直線之間的距離等于,則萊洛三角形的周長(zhǎng)為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,以AB為直徑的⊙O分別與BC,AC相交于點(diǎn)D,E,BD=CD,過點(diǎn)D作⊙O的切線交邊AC于點(diǎn)F.

(1)求證:DF⊥AC;

(2)若⊙O的半徑為5,∠CDF=30°,求的長(zhǎng)(結(jié)果保留π).

查看答案和解析>>

同步練習(xí)冊(cè)答案