【題目】如圖,在△ABC中,以AB為直徑的⊙O分別與BC,AC相交于點D,E,BD=CD,過點D作⊙O的切線交邊AC于點F.
(1)求證:DF⊥AC;
(2)若⊙O的半徑為5,∠CDF=30°,求的長(結果保留π).
【答案】(1)證明見解析;(2)的長為.
【解析】試題分析:(1)連接OD,由切線的性質即可得出∠ODF=90°,再由BD=CD,OA=OB可得出OD是△ABC的中位線,根據三角形中位線的性質即可得出,根據平行線的性質即可得出∠CFD=∠ODF=90°,從而證出DF⊥AC;
(2)由∠CDF=30°以及∠ODF=90°即可算出∠ODB=60°,再結合OB=OD可得出△OBD是等邊三角形,根據弧長公式即可得出結論.
試題解析:(1)證明:連接OD,如圖所示.
∵DF是⊙O的切線,D為切點,
∴OD⊥DF,
∴∠ODF=90°
∵BD=CD,OA=OB,
∴OD是△ABC的中位線,
∴OD∥AC,
∴∠CFD=∠ODF=90°,
∴DF⊥AC.
(2)解:∵∠CDF=30°,
由(1)得∠ODF=90°,
∴∠ODB=180°-∠CDF-∠ODF=60°
∵OB=OD,
∴△OBD是等邊三角形,
∴∠BOD=60°,
∴BD弧的長=
科目:初中數學 來源: 題型:
【題目】感知:如圖1,AD平分∠BAC.∠B+∠C=180°,∠B=90°,易知:DB=DC.
探究:如圖2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,求證:DB=DC.
應用:如圖3,四邊形ABCD中,∠B=45°,∠C=135°,DB=DC=a,則AB﹣AC= (用含a的代數式表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我市某中學決定在學生中開展丟沙包、打籃球、跳大繩和踢毽球四種項目的活動,為了解學生對四種項目的喜歡情況,隨機調查了該校m名學生最喜歡的一種項目(每名學生必選且只能選擇四種活動項目的一種),并將調查結果繪制成如下的不完整的統(tǒng)計圖表:
學生最喜歡的活動項目的人數統(tǒng)計表
項目 | 學生數(名) | 百分比 |
丟沙包 | 20 | 10% |
打籃球 | 60 | p% |
跳大繩 | n | 40% |
踢毽球 | 40 | 20% |
根據圖表中提供的信息,解答下列問題:
(1)m= ,n= ,p= ;
(2)請根據以上信息直接補全條形統(tǒng)計圖;
(3)根據抽樣調查結果,請你估計該校2000名學生中有多少名學生最喜歡跳大繩.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△AOB中,∠AOB=90°,OA在x軸上,OB在y軸上,點A,B的坐標分別為(,0),(0,1),把Rt△AOB沿著AB對折得到Rt△AO′B,則點O′的坐標為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,點P、Q分別是等邊△ABC邊AB、BC上的動點(端點除外),點P從頂點A、點Q從頂點B同時出發(fā),且它們的運動速度相同,連接AQ、CP交于點M.
(1)求證:△ABQ≌△CAP;
(2)當點P、Q分別在AB、BC邊上運動時,∠QMC變化嗎?若變化,請說明理由;若不變,求出它的度數.
(3)如圖2,若點P、Q在運動到終點后繼續(xù)在射線AB、BC上運動,直線AQ、CP交點為M,則∠QMC變化嗎?若變化,請說明理由;若不變,直接寫出它的度數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com