【題目】如圖,已知正方形ABCD,點(diǎn)M是邊BA延長(zhǎng)線上的動(dòng)點(diǎn)(不與點(diǎn)A重合),且AM<AB,△CBE由△DAM平移得到.若過(guò)點(diǎn)E作EH⊥AC,H為垂足,則有以下結(jié)論:①點(diǎn)M位置變化,使得∠DHC=60°時(shí),2BE=DM;②無(wú)論點(diǎn)M運(yùn)動(dòng)到何處,都有DM=HM;③無(wú)論點(diǎn)M運(yùn)動(dòng)到何處,∠CHM一定大于135°.其中正確結(jié)論的序號(hào)為_____.
【答案】①②③
【解析】先判定△MEH≌△DAH(SAS),即可得到△DHM是等腰直角三角形,進(jìn)而得出DM=HM;依據(jù)當(dāng)∠DHC=60°時(shí),∠ADH=60°﹣45°=15°,即可得到Rt△ADM中,DM=2AM,即可得到DM=2BE;依據(jù)點(diǎn)M是邊BA延長(zhǎng)線上的動(dòng)點(diǎn)(不與點(diǎn)A重合),且AM<AB,可得∠AHM<∠BAC=45°,即可得出∠CHM>135°.
由題可得,AM=BE,
∴AB=EM=AD,
∵四邊形ABCD是正方形,EH⊥AC,
∴EM=AH,∠AHE=90°,∠MEH=∠DAH=45°=∠EAH,
∴EH=AH,
∴△MEH≌△DAH(SAS),
∴∠MHE=∠DHA,MH=DH,
∴∠MHD=∠AHE=90°,△DHM是等腰直角三角形,
∴DM=HM,故②正確;
當(dāng)∠DHC=60°時(shí),∠ADH=60°﹣45°=15°,
∴∠ADM=45°﹣15°=30°,
∴Rt△ADM中,DM=2AM,
即DM=2BE,故①正確;
∵點(diǎn)M是邊BA延長(zhǎng)線上的動(dòng)點(diǎn)(不與點(diǎn)A重合),且AM<AB,
∴∠AHM<∠BAC=45°,
∴∠CHM>135°,故③正確,
故答案為:①②③.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線上部分點(diǎn)坐標(biāo)如表所示,下列說(shuō)法錯(cuò)誤的是( )
x | … | -3 | -2 | -1 | 0 | 1 | … |
y | … | -6 | 0 | 4 | 6 | 6 | … |
A. 拋物線與y軸的交點(diǎn)為(0,6) B. 拋物線的對(duì)稱軸是在y軸的右側(cè);
C. 拋物線一定經(jīng)過(guò)點(diǎn)(3,0) D. 在對(duì)稱軸左側(cè),y隨x增大而減。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一個(gè)單位面積為1的方格紙上,△A1A2A3,△A3A4A5,△A5A6A7,……是斜邊在x軸上,且斜邊長(zhǎng)分別為2,4,6,……的等腰直角三角形.若△A1A2A3的頂點(diǎn)坐標(biāo)分別為A1(2,0),A2(1,-1),A3(0,0),則依圖中所示規(guī)律,點(diǎn)A2019的橫坐標(biāo)為( 。
A. 1010B. C. 1008D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠1=∠2,DE⊥BC,AB⊥BC,試說(shuō)明:∠A=∠3.
解:因?yàn)?/span>DE⊥BC,AB⊥BC(已知),
所以∠DEC=∠ABC=90°(____________),
所以DE∥AB(____________________),
所以∠2=________(____________________),
∠1=________(____________________).
因?yàn)椤?/span>1=∠2(已知),
所以∠A=∠3(等量代換).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,△ABC中,A(﹣2,1)、B(﹣4,﹣2)、C(﹣1,﹣3),△A′B′C′是△ABC平移之后得到的圖,并且C的對(duì)應(yīng)點(diǎn)C′的坐標(biāo)為(4,1)。
(1)A′、B′.兩點(diǎn)的坐標(biāo)分別為A′ 、B′ ;
(2)請(qǐng)作出△ABC平移之后的圖形△A′B′C′;
(3)求△A′B′C′的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 如圖所示,已知直線AB和直線CD被直線EF所截,交點(diǎn)分別為E、F,∠AEF=∠EFD.
(1)直線AB和直線CD平行嗎?為什么?
(2)若EM是∠AEF的平分線,FN是∠EFD的平分線,則EM與FN平行嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,E為邊BC延長(zhǎng)線上一點(diǎn),∠ABC的平分線與∠ACE的平分線交于點(diǎn)D,若∠A=46°,則∠D的度數(shù)為( )
A.23°B.92°C.44°D.46°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中有四邊形ABCD.
(1)寫(xiě)出四邊形ABCD的頂點(diǎn)坐標(biāo);
(2)求線段AB的長(zhǎng);
(3)求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1是長(zhǎng)方形紙袋,將紙袋沿EF折疊成圖2,再沿BF折疊成圖3,若∠DEF=α,用α表示圖3中∠CFE的大小為 _________。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com