【題目】如圖所示,已知△ABC的三個頂點的坐標分別為A(﹣2,3),B(﹣6,0),C(﹣1,0).

(1)請直接寫出點B關于點A對稱的點的坐標;
(2)將△ABC繞坐標原點O逆時針旋轉90°,畫出圖形,直接寫出點B的對應點的坐標;
(3)請直接寫出:以A,B,C為頂點的平行四邊形的第四個頂點D的坐標.

【答案】
(1)解:點B關于點A對稱的點的坐標為(2,6)
(2)解:所作圖形如圖所示:

,

點B'的坐標為:(0,﹣6)


(3)解:當以AB為對角線時,點D坐標為(﹣7,3);

當以AC為對角線時,點D坐標為(3,3);

當以BC為對角線時,點D坐標為(﹣5,﹣3)


【解析】(1)B關于A對稱的點坐標可套中點公式,即A是中點;(3)以A,B,C為頂點的平行四邊形分三類:以AB為對角線;以AC為對角線;以BC為對角線;利用點平移后坐標的變化規(guī)律可求出.
【考點精析】根據(jù)題目的已知條件,利用坐標與圖形變化-平移的相關知識可以得到問題的答案,需要掌握新圖形的每一點,都是由原圖形中的某一點移動后得到的,這兩個點是對應點;連接各組對應點的線段平行且相等.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知等腰三角形ABC中,AB=AC,點D、E分別在邊AB、AC上,且AD=AE,連接BE、CD,交于點F

(1)判斷∠ABE與∠ACD的數(shù)量關系,并說明理由;

(2)求證:過點A、F的直線垂直平分線段BC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點,點軸上兩點,其中,點都在軸上,在射線上(不與點重合),,連結

1)求、的坐標;

2)如圖,若軸正半軸,在線段上,當時,求證:為等邊三角形;(提示:連結

3)當時,在圖中畫出示意圖,設,若,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,直線ABCD,EAB、CD間的一點,連接EA、EC.


(1)如圖①,若∠A=20°,C=40°,則∠AEC=   °.

(2)如圖②,若∠A=x°,C=y°,則∠AEC=   °.

(3)如圖③,若∠A=α,C=β,則α,β與∠AEC之間有何等量關系.并簡要說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平行四邊形ABCD中,AD=13,BADADC的角平分線分別交BCEF,且EF=6,則平行四邊形的周長是____________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖1,在面積為3的正方形ABCD中,E,F(xiàn)分別是BC和CD邊上的兩點,AE⊥BF于點G,且BE=1.

(1)求證:△ABE≌△BCF;
(2)求出△ABE和△BCF重疊部分(即△BEG)的面積;
(3)現(xiàn)將△ABE繞點A逆時針方向旋轉到△AB′E′(如圖2),使點E落在CD邊上的點E′處,問△ABE在旋轉前后與△BCF重疊部分的面積是否發(fā)生了變化?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,邊長為2的正方形ABCD的頂點A在y軸上,頂點D在反比例函數(shù)y= (x>0)的圖象上,已知點B的坐標是( , ),則k的值為( )

A.4
B.6
C.8
D.10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】x,y定義一種新運算T,規(guī)定:Tx,y)=(其中a,b均為非零常數(shù)),這里等式右邊是通常的四則運算,例如:T0,1)=b,已知T1,1)=2.5T4,﹣2)=4

1)求a,b的值;

2)若關于m的不等式組恰好有2個整數(shù)解,求實數(shù)P的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線l∥AB,l與AB之間的距離為2.C、D是直線l上兩個動點(點C在D點的左側),且AB=CD=5.連接AC、BC、BD,將△ABC沿BC折疊得到△A′BC.下列說法:①四邊形ABCD的面積始終為10;②當A′與D重合時,四邊形ABDC是菱形;③當A′與D不重合時,連接A′、D,則∠CA′D+∠BCA′=180°;④若以A′、C、B、D為頂點的四邊形為矩形,則此矩形相鄰兩邊之和為3或7.其中正確的是( 。

A. ①②④ B. ①③④ C. ①②③ D. ①②③④

查看答案和解析>>

同步練習冊答案