【題目】已知:如圖1,在面積為3的正方形ABCD中,E,F(xiàn)分別是BC和CD邊上的兩點(diǎn),AE⊥BF于點(diǎn)G,且BE=1.

(1)求證:△ABE≌△BCF;
(2)求出△ABE和△BCF重疊部分(即△BEG)的面積;
(3)現(xiàn)將△ABE繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)到△AB′E′(如圖2),使點(diǎn)E落在CD邊上的點(diǎn)E′處,問(wèn)△ABE在旋轉(zhuǎn)前后與△BCF重疊部分的面積是否發(fā)生了變化?請(qǐng)說(shuō)明理由.

【答案】
(1)證明:∵四邊形ABCD是正方形,

∴∠ABE=∠BCF=90°,AB=BC,

∴∠ABF+∠CBF=90°,

∵AE⊥BF,

∴∠ABF+∠BAE=90°,

∴∠BAE=∠CBF,

在△ABE和△BCF中,

∴△ABE≌△BCF


(2)解:∵正方形面積為3,

∴AB= ,

在△BGE與△ABE中,

∵∠GBE=∠BAE,∠EGB=∠EBA=90°,

∴△BGE∽△ABE,

,

又∵BE=1,

∴AE2=AB2+BE2=3+1=4,

∴SBGE= ×SABE= =


(3)解:沒(méi)有變化.

理由:∵AB= ,BE=1,

∴tan∠BAE= = ,∠BAE=30°,

∵AB′=AB=AD,∠AB′E′=∠ADE′=90°,AE′公共,

∴Rt△ABE≌Rt△AB′E′≌Rt△ADE′,

∴∠DAE′=∠B′AE′=∠BAE=30°,

∴AB′與AE在同一直線(xiàn)上,即BF與AB′的交點(diǎn)是G,

設(shè)BF與AE′的交點(diǎn)為H,

則∠BAG=∠HAG=30°,而∠AGB=∠AGH=90°,AG公共,

∴△BAG≌△HAG(ASA),

∴S四邊形GHE′B′=SAB′E′﹣SAGH=SABE﹣SABG=SBGE

∴△ABE在旋轉(zhuǎn)前后與△BCF重疊部分的面積沒(méi)有變化.


【解析】(1)利用正方形的性質(zhì)和互為余角的性質(zhì)可證出全等;(2)利用相似三角形的性質(zhì),面積比等于相似比的平方可求出;(3)可借鑒(2)的思路方法構(gòu)造出原來(lái)的三角形,通過(guò)轉(zhuǎn)化S四邊形GHE′B′=SAB′E′﹣SAGH=SABE﹣SABG=SBGE,沒(méi)有發(fā)生變化.
【考點(diǎn)精析】關(guān)于本題考查的正方形的性質(zhì)和相似三角形的判定與性質(zhì),需要了解正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線(xiàn)相等,并且互相垂直平分,每條對(duì)角線(xiàn)平分一組對(duì)角;正方形的一條對(duì)角線(xiàn)把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線(xiàn)與邊的夾角是45o;正方形的兩條對(duì)角線(xiàn)把這個(gè)正方形分成四個(gè)全等的等腰直角三角形;相似三角形的一切對(duì)應(yīng)線(xiàn)段(對(duì)應(yīng)高、對(duì)應(yīng)中線(xiàn)、對(duì)應(yīng)角平分線(xiàn)、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ADBC,若∠ADP=∠α,∠BCP=∠β,射線(xiàn)OM上有一動(dòng)點(diǎn)P

1)當(dāng)點(diǎn)PA,B兩點(diǎn)之間運(yùn)動(dòng)時(shí),∠CPD與∠α、∠β之間有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由

2)如果點(diǎn)PA、B兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)P與點(diǎn)A、B、O三點(diǎn)不重合),請(qǐng)你直接寫(xiě)出∠CPD與∠α、∠β之間的何數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:E是∠AOB的平分線(xiàn)上一點(diǎn),ECOA ,EDOB ,垂足分別為C、D求證:(1OED≌△OEC 2)∠ECD=EDC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知,.點(diǎn)是射線(xiàn)上一動(dòng)點(diǎn)(與點(diǎn)不重合),、分別平分、分別交射線(xiàn)于點(diǎn),.

(1)的度數(shù)是________;

,________;

(2)的度數(shù);

(3)當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),之間的數(shù)量關(guān)系是否隨之發(fā)生變化?若不變化,請(qǐng)寫(xiě)出它們之間的關(guān)系,并說(shuō)明理由;若變化,請(qǐng)寫(xiě)出變化規(guī)律.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣2,3),B(﹣6,0),C(﹣1,0).

(1)請(qǐng)直接寫(xiě)出點(diǎn)B關(guān)于點(diǎn)A對(duì)稱(chēng)的點(diǎn)的坐標(biāo);
(2)將△ABC繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,畫(huà)出圖形,直接寫(xiě)出點(diǎn)B的對(duì)應(yīng)點(diǎn)的坐標(biāo);
(3)請(qǐng)直接寫(xiě)出:以A,B,C為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個(gè)頂點(diǎn)B(1,0),C(3,0),D(3,4).以A為頂點(diǎn)的拋物線(xiàn)y=ax2+bx+c過(guò)點(diǎn)C.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿線(xiàn)段AB向點(diǎn)B運(yùn)動(dòng).同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿線(xiàn)段CD向點(diǎn)D運(yùn)動(dòng).點(diǎn)P,Q的運(yùn)動(dòng)速度均為每秒1個(gè)單位.運(yùn)動(dòng)時(shí)間為t秒.過(guò)點(diǎn)P作PE⊥AB交AC于點(diǎn)E.

(1)直接寫(xiě)出點(diǎn)A的坐標(biāo),并求出拋物線(xiàn)的解析式;
(2)過(guò)點(diǎn)E作EF⊥AD于F,交拋物線(xiàn)于點(diǎn)G,當(dāng)t為何值時(shí),△ACG的面積最大?最大值為多少?
(3)在動(dòng)點(diǎn)P,Q運(yùn)動(dòng)的過(guò)程中,當(dāng)t為何值時(shí),在矩形ABCD內(nèi)(包括邊界)存在點(diǎn)H,使以C,Q,E,H為頂點(diǎn)的四邊形為菱形?請(qǐng)直接寫(xiě)出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠B=45°,cosA= ,則∠C的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖 1,直線(xiàn)分別交于點(diǎn)(點(diǎn)在點(diǎn)的右側(cè)),若

1)求證:;

2)如圖2所示,點(diǎn)之間,且位于的異側(cè),連, ,則三個(gè)角之間存在何種數(shù)量關(guān)系,并說(shuō)明理由.

3)如圖 3 所示,點(diǎn)在線(xiàn)段上,點(diǎn)在直線(xiàn)的下方,點(diǎn)是直線(xiàn)上一點(diǎn)(在的左側(cè)),連接,,則請(qǐng)直接寫(xiě)出之間的數(shù)量

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形ABCD的對(duì)角線(xiàn)AC、BD相交于點(diǎn)O,OB=OD,BF=DE,AECF.

(1)求證:OAE≌△OCF;

(2)若OA=OD,猜想:四邊形ABCD的形狀,請(qǐng)證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案