【題目】如圖,邊長(zhǎng)為2的正方形ABCD的頂點(diǎn)A在y軸上,頂點(diǎn)D在反比例函數(shù)y= (x>0)的圖象上,已知點(diǎn)B的坐標(biāo)是( ),則k的值為( )

A.4
B.6
C.8
D.10

【答案】C
【解析】如圖,過點(diǎn)B作BE⊥y軸于E,過點(diǎn)D作DF⊥y軸于F,

在正方形ABCD中,AB=AD,∠BAD=90°,

∴∠BAE+∠DAF=90°,

∵∠DAF+∠ADF=90°,

∴∠BAE=∠ADF,

在△ABE和△DAF中,

,

∴△ABE≌△DAF(AAS),

∴AF=BE,DF=AE,

∵正方形的邊長(zhǎng)為2,B( ),

∴BE= ,AE= = ,

∴OF=OE+AE+AF= + + =5,

∴點(diǎn)D的坐標(biāo)為( ,5),

∵頂點(diǎn)D在反比例函數(shù)y= (x>0)的圖象上,

∴k=xy= ×5=8.

所以答案是:C.

【考點(diǎn)精析】通過靈活運(yùn)用正方形的性質(zhì),掌握正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知第三象限的點(diǎn)Px,y)滿足

1)求點(diǎn)P的坐標(biāo);

2)①點(diǎn)Px軸的距離為_______;

②把點(diǎn)P向右平移m個(gè)單位后得到P1,則點(diǎn)P1x軸的距離為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將一個(gè)邊長(zhǎng)為的正方形圖形分割成四部分,觀察圖形,解答下列問題:

(1)根據(jù)圖中條件,請(qǐng)用兩種方法表示該陰影圖形的總面積

方法1:_________________方法2__________________;

由此可得等量關(guān)系:______________________________;

應(yīng)用該等量關(guān)系解決下列問題:

(2)若圖中的a,b)滿足,,求的值;

3)若,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣2,3),B(﹣6,0),C(﹣1,0).

(1)請(qǐng)直接寫出點(diǎn)B關(guān)于點(diǎn)A對(duì)稱的點(diǎn)的坐標(biāo);
(2)將△ABC繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,畫出圖形,直接寫出點(diǎn)B的對(duì)應(yīng)點(diǎn)的坐標(biāo);
(3)請(qǐng)直接寫出:以A,B,C為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,,E是邊CD的中點(diǎn),連接BE并延長(zhǎng)與AD的延長(zhǎng)線相較于點(diǎn)F.△BCD是等腰三角形,則四邊形BDFC的面積為_______________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠B=45°,cosA= ,則∠C的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了抗擊新冠病毒,保護(hù)學(xué)生和教師的生命安全,新希望中學(xué)元購(gòu)進(jìn)甲、乙兩種醫(yī)用口罩共計(jì)盒,甲,乙兩種口罩的售價(jià)分別是/盒,/盒;甲,乙兩 種口罩的數(shù)量分別是個(gè)/盒,個(gè)/盒.

1)求新希望中學(xué)甲、乙兩種口罩各購(gòu)進(jìn)了多少盒?

2)按照教育局要求,學(xué)校必須儲(chǔ)備兩周的用量,新希望中學(xué)師生共計(jì)人,每人每天個(gè)口罩,問購(gòu)買的口罩?jǐn)?shù)量是否能滿足教育局的要求?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在Rt△ABC中,∠B=30°,∠ACB=90°,延長(zhǎng)CA到O,使AO=AC,以O(shè)為圓心,OA長(zhǎng)為半徑作⊙O交BA延長(zhǎng)線于點(diǎn)D,連接CD.

(1)求證:CD是⊙O的切線;
(2)若AB=4,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)xOy中,正比例函數(shù)y=kx的圖象與反比例函數(shù)y= 的圖象都經(jīng)過點(diǎn)A(2,﹣2).

(1)分別求這兩個(gè)函數(shù)的表達(dá)式;
(2)將直線OA向上平移3個(gè)單位長(zhǎng)度后與y軸交于點(diǎn)B,與反比例函數(shù)圖象在第四象限內(nèi)的交點(diǎn)為C,連接AB,AC,求點(diǎn)C的坐標(biāo)及△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案