分析 利用已知條件先證明△BEC≌△BFC,得到∠BCE=∠BCF,進(jìn)一步證明∠ABP=∠ACQ,再證明△ABP≌△AQC,得到AQ=AP,即△APQ為等腰三角形.
解答 解:∵AB=AC,
∴∠ABC=∠ACB,
∵CE,BF是兩腰上的高線,
∴∠BEC=∠BFC=90°,
在△BEC和△BFC中,
$\left\{\begin{array}{l}{∠ABC=∠ACB}\\{∠BEC=∠BFC=90°}\\{BC=CB}\end{array}\right.$,
∴△BEC≌△BFC,
∴∠BCE=∠BCF,
∵∠ABC=∠ACB,
∴∠ABP=∠ACQ,
在△ABP和△AQC中,
$\left\{\begin{array}{l}{BP=AC}\\{∠ABP=∠ACQ}\\{CQ=AB}\end{array}\right.$,
∴△ABP≌△AQC,
∴AQ=AP,
∴△APQ為等腰三角形.
點(diǎn)評 本題考查了全等三角形的性質(zhì)定理與判定定理,解決本題的關(guān)鍵是證明△BEC≌△BFC,△ABP≌△AQC.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | b<-a<a<-b | B. | -b<-a<a<b | C. | -a<b<-b<a | D. | -a<-b<a<b |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com