【題目】閱讀材料:基本不等式≤(a>0,b>0),當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立.其中我們把叫做正數(shù)a、b的算術(shù)平均數(shù),叫做正數(shù)a、b的幾何平均數(shù),它是解決最大(。┲祮(wèn)題的有力工具.
例如:在x>0的條件下,當(dāng)x為何值時(shí),x+有最小值,最小值是多少?
解:∵x>0,>0∴≥即是x+≥2
∴x+≥2
當(dāng)且僅當(dāng)x=即x=1時(shí),x+有最小值,最小值為2.
請(qǐng)根據(jù)閱讀材料解答下列問(wèn)題
(1)若x>0,函數(shù)y=2x+,當(dāng)x為何值時(shí),函數(shù)有最值,并求出其最值.
(2)當(dāng)x>0時(shí),式子x2+1+≥2成立嗎?請(qǐng)說(shuō)明理由.
【答案】(1)當(dāng)x=時(shí),函數(shù)有最小值,最小值為2;(2)不成立,理由見(jiàn)解析
【解析】
(1)利用基本不等式即可解決問(wèn)題.
(2)利用基本不等式即可判斷.
解:(1)∵x>0,
∴2x>0,
∴2x+≥2=2,
當(dāng)且僅當(dāng)2x=即x=時(shí),2x+有最小值,最小值為2.
(2)式子不成立.
理由:∵x>0,
∴x2+1>0,>0,
∴x2+1+≥2=2,
當(dāng)且僅當(dāng)x2+1即x=0時(shí),不等式成立,
∵x>0,
∴不等式不能取等號(hào),即不成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A、P在反比例函數(shù)y=(k<0)的圖象上,點(diǎn)B、Q在直線(xiàn)y=x-3的圖象上,點(diǎn)B的縱坐標(biāo)為-1,AB⊥x軸,且S△OAB=4,若P、Q兩點(diǎn)關(guān)于y軸對(duì)稱(chēng),設(shè)點(diǎn)P的坐標(biāo)為(m,n).
(1)求點(diǎn)A的坐標(biāo)和k的值;
(2)求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的邊AD⊥y軸,垂足為點(diǎn)E,頂點(diǎn)A在第二象限,頂點(diǎn)B在y軸的正半軸上,反比例函數(shù)y=(k≠0,x>0)的圖象同時(shí)經(jīng)過(guò)頂點(diǎn)C,D.若點(diǎn)C的橫坐標(biāo)為5,BE=3DE,則k的值為( 。
A. B. 3 C. D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把△ABC沿EF翻折,疊合后的圖形如圖.若∠A=60°,∠1=95°,則∠2的度數(shù)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB與⊙O相切于點(diǎn)C,OA=OB,⊙O的直徑為6 cm,AB=6 cm,則陰影部分的面積為( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系 xOy 中,已知正比例函數(shù) y1=﹣2x 的圖象與反比例函數(shù) y2=的圖象交于 A(﹣1,a),B 兩點(diǎn).
(1)求出反比例函數(shù)的解析式及點(diǎn) B 的坐標(biāo);
(2)觀察圖象,請(qǐng)直接寫(xiě)出滿(mǎn)足 y≤2 的取值范圍;
(3)點(diǎn) P 是第四象限內(nèi)反比例函數(shù)的圖象上一點(diǎn),若△POB 的面積為 1,請(qǐng)直接寫(xiě)出點(diǎn) P的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是中國(guó)傳統(tǒng)數(shù)學(xué)最重要的著作,在“勾股”章中有這樣一個(gè)問(wèn)題:“今有邑方二百步,各中開(kāi)門(mén),出東門(mén)十五步有木,問(wèn):出南門(mén)幾步而見(jiàn)木?”
用今天的話(huà)說(shuō),大意是:如圖,是一座邊長(zhǎng)為200步(“步”是古代的長(zhǎng)度單位)的正方形小城,東門(mén)位于的中點(diǎn),南門(mén)位于的中點(diǎn),出東門(mén)15步的處有一樹(shù)木,求出南門(mén)多少步恰好看到位于處的樹(shù)木(即點(diǎn)在直線(xiàn)上)?請(qǐng)你計(jì)算的長(zhǎng)為__________步.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等邊三角形,CE是外角平分線(xiàn),點(diǎn)D在AC上,連結(jié)BD并延長(zhǎng)與CE交于點(diǎn)E.
(1)求證:△ABD∽△CED.
(2)若AB=6,AD=2CD,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在Rt△ABC中,∠ACB=90°,AC=3,BC=4,點(diǎn)E、F分別在邊AB、AC上,將△AEF沿直線(xiàn)EF折疊,使點(diǎn)A的對(duì)應(yīng)點(diǎn)D恰好落在邊BC上.若△BDE是直角三角形,則CF的長(zhǎng)為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com