【題目】端午節(jié)是我國的傳統(tǒng)佳節(jié),歷來有吃粽子的習俗.我市某食品加工廠,擁有A、B兩條粽子加工生產(chǎn)線.原計劃A生產(chǎn)線每小時加工粽子個數(shù)是B生產(chǎn)線每小時加工粽子個數(shù)的

1)若A生產(chǎn)線加工4000個粽子所用時間與B生產(chǎn)線加工4000個粽子所用時間之和恰好為18小時,則原計劃A、B生產(chǎn)線每小時加工粽子各是多少個?

2)在(1)的條件下,原計劃A、B生產(chǎn)線每天均加工a小時,由于受其他原因影響,在實際加工過程中,A生產(chǎn)線每小時比原計劃少加工100個,B生產(chǎn)線每小時比原計劃少加工50個.為了盡快將粽子投放到市場,A生產(chǎn)線每天比原計劃多加工3小時,B生產(chǎn)線每天比原計劃多加工a小時.這樣每天加工的粽子不少于6300個,求a的最小值.

【答案】1A、B生產(chǎn)線每小時加工粽子各是400、500個;(2a的最小值為6

【解析】

1)首先根據(jù)原計劃A生產(chǎn)線每小時加工粽子個數(shù)是B生產(chǎn)線每小時加工粽子個數(shù)的設原計劃B生產(chǎn)線每小時加工粽子5x個,則原計劃A生產(chǎn)線每小時加工粽子4x個,再根據(jù)“A生產(chǎn)線加工4000個粽子所用時間與B生產(chǎn)線加工4000個粽子所用時間之和恰好為18小時列出方程,再解即可;

2)根據(jù)題意可得A加工速度為每小時300個,B的加工速度為每小時450個,根據(jù)題意可得A的加工時間為(a+3)小時,B的加工時間為(a+a)小時,再根據(jù)每天加工的粽子不少于6300個可得不等式(400-100)(a+3+500-50)(a+a≥6300,再解不等式可得a的取值范圍,然后可確定答案.

1)設原計劃B生產(chǎn)線每小時加工粽子5x個,則原計劃A生產(chǎn)線每小時加工粽子4x個,

根據(jù)題意得

x100,

經(jīng)檢驗x100為原分式方程的解

4x4×100400,5x5×100500,

答:原計劃A、B生產(chǎn)線每小時加工粽子各是400、500個;

2)由題意得:(400100)(a+3+50050)(a+a≥6300,

解得:a≥6,

a的最小值為6

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點C的坐標為(4,﹣1).

1)把△ABC向上平移5個單位后得到對應的△A1B1C1,畫出△A1B1C1,并寫出C1的坐標;

2)以原點O為對稱中心,再畫出與△A1B1C1關于原點O對稱的△A2B2C2,并寫出點C2的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面的統(tǒng)計圖表示某體校射擊隊甲、乙兩名隊員射擊比賽的成績,根據(jù)統(tǒng)計圖中的信息,下列結論正確的是( 。

A. 甲隊員成績的平均數(shù)比乙隊員的大

B. 乙隊員成績的平均數(shù)比甲隊員的大

C. 甲隊員成績的中位數(shù)比乙隊員的大

D. 甲隊員成績的方差比乙隊員的大

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線ABx軸交于點A1,0),與y軸交于點B0,-2).

1)求直線AB的表達式;

2)若直線AB上有一動點C,且,求點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在邊長為1的小正方形網(wǎng)格中,AOB的頂點均在格點上.

(1)B點關于y軸的對稱點坐標為 ;

(2)將AOB向左平移3個單位長度,再向上平移2個單位長度得到A1O1B1,請畫出A1O1B1

(3)在(2)的條件下,AOB邊AB上有一點P的坐標為(a,b),則平移后對應點P1的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一直角坐標系中,函數(shù)ykx+1y=﹣k≠0)的圖象大致是( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)解分式方程

2)已知(x2+px+q)(x23x+2)中,不含x3項和x項,求pq的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一次函數(shù)與反比例函數(shù)的圖像相交于點,與軸相交于點.

(1)填空:的值為 , 的值為

(2)觀察反比函數(shù)的圖像,當時,請直接寫出自變量的取值范圍;

(3)以為邊作菱形,使點軸負半軸上,點在第二象限內(nèi),求點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(12分)如圖1所示,將一個邊長為2的正方形ABCD和一個長為2、寬為1的矩形CEFD拼在一起,構成一個大的長方形ABEF現(xiàn)將小長方形CEFD繞點C順時針旋轉(zhuǎn)至CEFD,旋轉(zhuǎn)角為

1)當點D恰好落在EF邊上時,則旋轉(zhuǎn)角α的值為________度;

2)如圖2,G為BC中點,且0°α90°,求證:GD=ED;

3)小長方形CEFD繞點C順時針旋轉(zhuǎn)一周的過程中,是否存在旋轉(zhuǎn)角α,使DCDCBD全等?若能,直接寫出旋轉(zhuǎn)角α的值;若不能,說明理由

查看答案和解析>>

同步練習冊答案