【題目】如圖,已知一次函數(shù)與反比例函數(shù)的圖像相交于點(diǎn),與軸相交于點(diǎn).

(1)填空:的值為 , 的值為

(2)觀察反比函數(shù)的圖像,當(dāng)時(shí),請(qǐng)直接寫(xiě)出自變量的取值范圍;

(3)以為邊作菱形,使點(diǎn)軸負(fù)半軸上,點(diǎn)在第二象限內(nèi),求點(diǎn)的坐標(biāo).

【答案】14,-24;(2x8x0;(3D(-114)

【解析】

1)把A點(diǎn)坐標(biāo)代入一次函數(shù)解析式可求得n,則可求得A點(diǎn)坐標(biāo),代入反比例函數(shù)解析式則可求得k的值;

2中,當(dāng)y=-3時(shí)可求得對(duì)應(yīng)的x的值,結(jié)合圖象即可求得x的取值范圍;

3)由一次函數(shù)解析式可先求得B點(diǎn)坐標(biāo),從而可求得AB的長(zhǎng),則可求得C點(diǎn)坐標(biāo),利用平移即可求得D點(diǎn)坐標(biāo).

1)把A點(diǎn)坐標(biāo)代入一次函數(shù)解析式可得n==4,

A(-64),

A點(diǎn)在反比例函數(shù)圖象上,

k=-6×4=-24.

故答案為:4,-24

2)由(1)可知反比例函數(shù)解析式為,

y=-3可得x=8

結(jié)合圖象可知當(dāng)y-3時(shí),x的取值范圍為x8x0;

3)在中,令y=0可得x=-3,

B(-3,0),

A(-6,4),

AB==5,

∵四邊形ABCD為菱形,且點(diǎn)Cx軸負(fù)半軸上,點(diǎn)D在第而象限,

BC=AB=5

∴點(diǎn)C是由點(diǎn)B向左平移5個(gè)單位得到,

∴點(diǎn)D是由點(diǎn)A向左平移5個(gè)單位得到,

D(-6-5,4),

D(-11,4).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某家電銷(xiāo)售商城電冰箱的銷(xiāo)售價(jià)為每臺(tái)2100元,空調(diào)的銷(xiāo)售價(jià)為每臺(tái)1750元,每臺(tái)電冰箱的進(jìn)價(jià)比每臺(tái)空調(diào)的進(jìn)價(jià)多400元,商城用80000元購(gòu)進(jìn)電冰箱的數(shù)量與用64000元購(gòu)進(jìn)空調(diào)的數(shù)量相等.

1)求每臺(tái)電冰箱與空調(diào)的進(jìn)價(jià)分別是多少?

2)現(xiàn)在商城準(zhǔn)備一次購(gòu)進(jìn)這兩種家電共100臺(tái),設(shè)購(gòu)進(jìn)電冰箱臺(tái),這100臺(tái)家電的銷(xiāo)售總利潤(rùn)為元,要求購(gòu)進(jìn)空調(diào)數(shù)量不超過(guò)電冰箱數(shù)量的2倍,試確定獲利最大的方案以及最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】端午節(jié)是我國(guó)的傳統(tǒng)佳節(jié),歷來(lái)有吃粽子的習(xí)俗.我市某食品加工廠,擁有AB兩條粽子加工生產(chǎn)線(xiàn).原計(jì)劃A生產(chǎn)線(xiàn)每小時(shí)加工粽子個(gè)數(shù)是B生產(chǎn)線(xiàn)每小時(shí)加工粽子個(gè)數(shù)的

1)若A生產(chǎn)線(xiàn)加工4000個(gè)粽子所用時(shí)間與B生產(chǎn)線(xiàn)加工4000個(gè)粽子所用時(shí)間之和恰好為18小時(shí),則原計(jì)劃A、B生產(chǎn)線(xiàn)每小時(shí)加工粽子各是多少個(gè)?

2)在(1)的條件下,原計(jì)劃AB生產(chǎn)線(xiàn)每天均加工a小時(shí),由于受其他原因影響,在實(shí)際加工過(guò)程中,A生產(chǎn)線(xiàn)每小時(shí)比原計(jì)劃少加工100個(gè),B生產(chǎn)線(xiàn)每小時(shí)比原計(jì)劃少加工50個(gè).為了盡快將粽子投放到市場(chǎng),A生產(chǎn)線(xiàn)每天比原計(jì)劃多加工3小時(shí),B生產(chǎn)線(xiàn)每天比原計(jì)劃多加工a小時(shí).這樣每天加工的粽子不少于6300個(gè),求a的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三孔橋橫截面的三個(gè)孔都呈拋物線(xiàn)形,兩小孔形狀、大小都相同,正常水位時(shí),大孔水面寬度AB=20m,頂點(diǎn)M距水面6m(即MO=6m),小孔頂點(diǎn)N距水面4.5mNC=4.5m),當(dāng)水位上漲剛好淹沒(méi)小孔時(shí),借助圖中的直角坐標(biāo)系,求此時(shí)大孔的水面寬度EF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若點(diǎn)Px,y)的坐標(biāo)滿(mǎn)足方程組

1)求點(diǎn)P的坐標(biāo)(用含m,n的式子表示);

2)若點(diǎn)P在第四象限,且符合要求的整數(shù)m只有兩個(gè),求n的取值范圍;

3)若點(diǎn)Px軸的距離為5,到y軸的距離為4,求mn的值(直接寫(xiě)出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,點(diǎn)D在BC上,DE∥AC,DF∥AB,下列四個(gè)判斷中不正確的是( )

A.四邊形AEDF是平行四邊形

B.若∠BAC=90°,則四邊形AEDF是矩形

C.若AD平分∠BAC,則四邊形AEDF是矩形

D.若AD⊥BC且AB=AC,則四邊形AEDF是菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某住宅小區(qū)在施工過(guò)程中留下了一塊空地(圖中的四邊形ABCD),經(jīng)測(cè)量,在四邊形ABCD中,AB3m,BC4mCD12mDA13m,∠B90°.

1)△ACD是直角三角形嗎?為什么?

2)小區(qū)為美化環(huán)境,欲在空地上鋪草坪,已知草坪每平方米80元,試問(wèn)鋪滿(mǎn)這塊空地共需花費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC是等邊三角形,ACE是等腰三角形,∠AEC120°AECE,FBC中點(diǎn),連接AE

1)直接寫(xiě)出∠BAE的度數(shù)為   ;

2)判斷AFCE的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,它與x軸的兩個(gè)交點(diǎn)分別為(-10),(3,0).對(duì)于下列命題:①b-2a=0;abc0a-2b+4c0;8a+c0.其中正確的有____________。

查看答案和解析>>

同步練習(xí)冊(cè)答案