【題目】如圖,在和中,,于點,于點,且.求證:.
【答案】見解析
【解析】
已知兩邊對應成比例,而這兩邊的夾角相等不能直接得到結(jié)論,則首先通過用三邊對應成相等比例的兩個三角形相似證明出△ADC∽△A′D′C′,從而得到對應角∠A=∠A′,然后和都有一個直角為90°,運用兩組角對應相等的兩個三角形相似可證明.
證明:設(shè)=k,則AC=kA′C′,CD=kC′D′
∵DC⊥AB于點D,D′C′⊥A′B′于點D′
∴∠ADC=∠A′D′C′=90°
在Rt△ADC中,AD=
在Rt△A′D′C′中,A′D′=
∴AD=kA′D′
∴
∴△ADC∽△A′D′C′
∴∠A=∠A′
∵∠ACB=∠A′C′B′=90°
∴Rt△ABC∽Rt△A′B′C′.
科目:初中數(shù)學 來源: 題型:
【題目】對某一個函數(shù)給出如下新定義:若存在實數(shù)M>0,對于任意的函數(shù)值y,都滿足-M≤y≤M,則稱這個函數(shù)是存界函數(shù),在所有滿足條件的M中,其最小值稱為這個函數(shù)的界值。例如,下圖中的函數(shù)是存界函數(shù),其界值是1。
(1)分別判斷函數(shù)(x>-1)和(-4<x≤2)是不是存界函數(shù)?若是存界函數(shù)求其界值;
(2)若函數(shù)(a≤x≤b,b>a)的界值是2,且這個函數(shù)的最大值也是2,求b的取值范圍:
(3)將函數(shù)(-1≤x≤m,m≥0)的圖象向下平移m個單位,得到的函數(shù)的界值是t,若使≤t≤1,則直接寫出m的取值范圍是_____________________________。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點D在AB上,以AD為直徑的⊙O與邊BC相切于點E,與邊AC相交于點G,且=,連接GO并延長交⊙O于點F,連接BF
(1)求證:①AO=AG,②BF是⊙O的切線.
(2)若BD=6,求圖形中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】菱形的對角線相交于O,以O為圓心,以點O到菱形一邊的距離為半徑的⊙O與菱形其它三邊的位置關(guān)系是( )
A. 相交B. 相離C. 相切D. 無法確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列各種圖形中,有可能不相似的是( )
A. 有一個角是的兩個等腰三角形B. 有一個角是的兩個等腰三角形
C. 有一個角是的兩個等腰三角形D. 兩個等腰直角三角形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正五邊形ABCDE,AF∥CD交DB的延長線于點F,交DE的延長線于點G.
(1)寫出圖中所有的等腰三角形;
(2)求證:∠G=2∠F.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將油箱注滿k升油后,轎車可行駛的總路程(單位:千米)與平均耗油量(單位:升/千米)之間是反比例函數(shù)關(guān)系(是常數(shù),k≠0).已知某轎車油箱注滿油后,以平均耗油量為每千米耗油0.1升的速度行駛,可行駛700千米.
(1)求該轎車可行駛的總路程S與平均耗油量a之間的函數(shù)解析式;
(2)當平均耗油量少于0.07升/千米時,該轎車至少可以行駛多少千米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司研發(fā)了一款成本為50元的新型玩具,投放市場進行試銷售.其銷售單價不低于成本,按照物價部門規(guī)定,銷售利潤率不高于90%,市場調(diào)研發(fā)現(xiàn),在一段時間內(nèi),每天銷售數(shù)量y(個)與銷售單價x(元)符合一次函數(shù)關(guān)系,如圖所示:
(1)根據(jù)圖象,直接寫出y與x的函數(shù)關(guān)系式;
(2)該公司要想每天獲得3000元的銷售利潤,銷售單價應定為多少元
(3)銷售單價為多少元時,每天獲得的利潤最大,最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AP是⊙O的切線,點A為切點,BP與⊙O交于點C,點D是AP的中點,連結(jié)CD.
(1)求證:CD是⊙O的切線;
(2)若AB=2,∠P=30°,求陰影部分的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com