【題目】如圖,AB是⊙O的直徑,AP是⊙O的切線,點(diǎn)A為切點(diǎn),BP與⊙O交于點(diǎn)C,點(diǎn)DAP的中點(diǎn),連結(jié)CD.

(1)求證:CD是⊙O的切線;

(2)若AB=2,P=30°,求陰影部分的面積.

【答案】(1)證明見(jiàn)解析;(2).

【解析】

(1)連結(jié)OCAC,由圓周角定理和切線的性質(zhì)得出ABP=90°,∠ACP=90°,由直角三角形斜邊上的中線性質(zhì)得出DC=AP=DA,由等腰三角形的性質(zhì)得出∠DAC=∠DCA,∠OAC=∠OCA,證出OCD=90°,即可得出結(jié)論;

(2)由含30°角的直角三角形的性質(zhì)得出BP=2AB=4,由勾股定理求出AP,再由直角三角形斜邊上的中線性質(zhì)得出CD的長(zhǎng)即可.

(1)連結(jié)OC,AC,如圖所示:

AB是⊙O的直徑,AP是切線,

∴∠BAP=90°,ACP=90°,

∵點(diǎn)DAP的中點(diǎn),

DC═AP=DA,

∴∠DAC=DCA,

又∵OA=OC,

∴∠OAC=OCA,

∴∠OCD=OCA+DCA=OAC+DAC=90°,

OCCD,

CD是⊙O的切線;

(2)∵在RtABP中,∠P=30°,

∴∠B=60°,

∴∠AOC=120°,

OA=1,BP=2AB=4,,

=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點(diǎn)C的坐標(biāo)為(1,0),頂點(diǎn)A的坐標(biāo)為(0,2),頂點(diǎn)B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當(dāng)頂點(diǎn)A恰好落在該雙曲線上時(shí)停止運(yùn)動(dòng),則此時(shí)點(diǎn)C的對(duì)應(yīng)點(diǎn)C′的坐標(biāo)為( 。

A. ,0) B. (2,0) C. ,0) D. (3,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AD是△ABC的高線,CE是△ABC的角平分線,它們相交于點(diǎn)P

1)若∠B40°,∠AEC75°,求證:ABBC;

2)若∠BAC90°,AP為△AECEC上中線,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,兩個(gè)含有30°角的完全相同的三角板ABCDEF沿直線l滑動(dòng),下列說(shuō)法錯(cuò)誤的是(  )

A. 四邊形ACDF是平行四邊形 B. 當(dāng)點(diǎn)EBC中點(diǎn)時(shí),四邊形ACDF是矩形

C. 當(dāng)點(diǎn)B與點(diǎn)E重合時(shí),四邊形ACDF是菱形 D. 四邊形ACDF不可能是正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】黃巖島自古以來(lái)就是中國(guó)的領(lǐng)土,如圖,為維護(hù)海洋利益,三沙市一艘海監(jiān)船在黃巖島附近海域巡航,某一時(shí)刻海監(jiān)船在A處測(cè)得該島上某一目標(biāo)C在它的北偏東45°方向,海監(jiān)船沿北偏西30°方向航行60海里后到達(dá)B處,此時(shí)測(cè)得該目標(biāo)C在它的南偏東75方向,求此時(shí)該船與目標(biāo)C之間的距離CB的長(zhǎng)度,(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解下列方程組:

(1) (2)

(3) (4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是邊長(zhǎng)為1的正方形,且DE,△ABF△ADE的旋轉(zhuǎn)圖形

1)旋轉(zhuǎn)中心是哪一點(diǎn)?

2)旋轉(zhuǎn)了多少度?

3AF的長(zhǎng)度是多少?

4)如果連結(jié)EF,那么△AEF是怎樣的三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系,O為坐標(biāo)原點(diǎn),點(diǎn)A(﹣2,0),點(diǎn)B0,2).

1)直接寫求∠BAO的度數(shù);

2)如圖1,將AOB繞點(diǎn)O順時(shí)針得AOB,當(dāng)A恰好落在AB邊上時(shí),設(shè)ABO的面積為S1,BAO的面積為S2,S1S2有何關(guān)系?為什么?

3)若將AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)到如圖2所示的位置,S1S2的關(guān)系發(fā)生變化了嗎?證明你的判斷.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=x2﹣6x+5的圖象交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,連接BC.

(1)直接寫出點(diǎn)B、C的坐標(biāo),B  ;C  

(2)點(diǎn)P是y軸右側(cè)拋物線上的一點(diǎn),連接PB、PC.若△PBC的面積15,求點(diǎn)P的坐標(biāo).

(3)設(shè)E為線段BC上一點(diǎn)(不含端點(diǎn)),連接AE,一動(dòng)點(diǎn)M從點(diǎn)A出發(fā),沿線段AE以每秒一個(gè)單位速度運(yùn)動(dòng)到E點(diǎn),再沿線段EC以每秒2個(gè)單位的速度運(yùn)動(dòng)到C后停止,當(dāng)點(diǎn)E的坐標(biāo)是  時(shí),點(diǎn)M在整個(gè)運(yùn)動(dòng)中用時(shí)最少,最少用時(shí)是  秒.

(4)若點(diǎn)Q在y軸上,當(dāng)∠AQB取得最大值時(shí),直接寫出點(diǎn)Q的坐標(biāo)  

查看答案和解析>>

同步練習(xí)冊(cè)答案