【題目】若△ABC內(nèi)接于⊙O,OC=6cm,AC=cm,則∠B等于   

【答案】60°120°;

【解析】

①連接OA,OC,過(guò)O作OD⊥AC于D,求出CD、AD,由勾股定理求出OD,求出∠ACO推出∠AOC=120°,根據(jù)圓周角定理求出∠B=∠AOC,代入求出即可.②同樣可求出∠D=60°,根據(jù)圓內(nèi)接四邊形性質(zhì)求出∠ABC=120°.

如圖1所示:

連接OA,OC,過(guò)OODACD,

ODAC,OD過(guò)圓心O,

AD=CD=AC=3,

由勾股定理得:OD==3,

OD=OC,

∴∠DCO=30°,COD=60°,

同理∠AOD=60°,

∵∠B=AOC,

∴∠B=60°.

②如圖所示:

∵由垂徑定理得CM═3 ,OC=6,由勾股定理得:OM=3,

∴∠OCM=30°,

∴∠MOC=60°,

∴∠AOC=2MOC=120°,

由圓周角定理得:∠D=60°,

A、D、C、B四點(diǎn)共圓,

∴∠ABC=120°,

故答案是:60°120°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:直線(xiàn),點(diǎn)分別是直線(xiàn),上任意兩點(diǎn),在直線(xiàn)上取一點(diǎn),使,連接,在直線(xiàn)上任取一點(diǎn),作,交直線(xiàn)于點(diǎn)

1)如圖1,若點(diǎn)是線(xiàn)段上任意一點(diǎn),,求證:;

2)如圖2,點(diǎn)在線(xiàn)段的延長(zhǎng)線(xiàn)上時(shí),互為補(bǔ)角,若,請(qǐng)判斷線(xiàn)段的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如右圖,C為線(xiàn)段AE上一動(dòng)點(diǎn)(不與點(diǎn)AE重合),在AE同側(cè)分別作正三角形ABC和正三角形CDE、ADBE交于點(diǎn)O,ADBC交于點(diǎn)P,BECD交于點(diǎn)Q,連結(jié)PQ.以下五個(gè)結(jié)論:①AD=BE;②PQAE;③AP=BQ;④DE=DP;⑤∠AOB=60°. 恒成立的結(jié)論有( )

A. ①③④⑤ B. ①②④⑤

C. ①②③⑤ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,兩個(gè)同心圓,大圓半徑為5cm,小圓的半徑為4cm,若大圓的弦AB與小圓有兩個(gè)公共點(diǎn),則AB的取值范圍是( 。

A. 4<AB<5 B. 6<AB<10 C. 6≤AB<10 D. 6<AB≤10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在⊙O中,點(diǎn)P為直徑BA延長(zhǎng)線(xiàn)上一點(diǎn),PD切⊙O于點(diǎn)D、過(guò)點(diǎn)BBHPH,點(diǎn)H為垂足,BH交⊙O于點(diǎn)C,連接BD,CD.

(1)求證:BD平分∠ABH;

(2)若CD=2,ABD=30°,求⊙O的直徑的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-35),B(-2,1),C(-1,3).

1)畫(huà)出ABC關(guān)于x軸的對(duì)稱(chēng)圖形A1B1C1;

2)畫(huà)出A1B1C1沿x軸向右平移4個(gè)單位長(zhǎng)度后得到的A2B2C2;

3)如果AC上有一點(diǎn)Ma,b)經(jīng)過(guò)上述兩次變換,那么對(duì)應(yīng)A2C2上的點(diǎn)M2的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為緩解油價(jià)上漲給出租車(chē)待業(yè)帶來(lái)的成本壓力,某巿自20181117日起,調(diào)整出租車(chē)運(yùn)價(jià),調(diào)整方案見(jiàn)下列表格及圖象(其中a,b,c為常數(shù))

行駛路程

收費(fèi)標(biāo)準(zhǔn)

調(diào)價(jià)前

調(diào)價(jià)后

不超過(guò)3km的部分

起步價(jià)6

起步價(jià)a

超過(guò)3km不超出6km的部分

每公里2.1

每公里b

超出6km的部分

每公里c

設(shè)行駛路程xkm時(shí),調(diào)價(jià)前的運(yùn)價(jià)y1(元),調(diào)價(jià)后的運(yùn)價(jià)為y2(元)如圖,折線(xiàn)ABCD表示y2x之間的函數(shù)關(guān)系式,線(xiàn)段EF表示當(dāng)0≤x≤3時(shí),y1x的函數(shù)關(guān)系式,根據(jù)圖表信息,完成下列各題:

(1)填空:a=   ,b=   ,c=   

(2)寫(xiě)出當(dāng)x>3時(shí),y1x的關(guān)系,并在上圖中畫(huà)出該函數(shù)的圖象

(3)函數(shù)y1y2的圖象是否存在交點(diǎn)?若存在,求出交點(diǎn)的坐標(biāo),并說(shuō)明該點(diǎn)的實(shí)際意義,若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的一條弦,ODAB,垂足為點(diǎn)C,交⊙O于點(diǎn)D,點(diǎn)E在⊙O上.

(1)若∠AOD=52°,求∠DEB的度數(shù);

(2)若CD=2,AB=8,求半徑的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一個(gè)直徑為1m的圓形鐵皮,要從中剪出一個(gè)最大的圓心角為90°的扇形ABC,如圖所示.

(1)求被剪掉陰影部分的面積:

(2)用所留的扇形鐵皮圍成一個(gè)圓錐,該圓錐的底面圓的半徑是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案