分析 (1)由已知條件得出AB=10,BC=5$\sqrt{3}$.由題意知:BM=2t,CN=$\sqrt{3}$t,BN=5$\sqrt{3}$-$\sqrt{3}$t,由BM=BN得出方程2t=5$\sqrt{3}$-$\sqrt{3}$t,解方程即可;
(2)分兩種情況:①當(dāng)△MBN∽△ABC時,由相似三角形的對應(yīng)邊成比例得出比例式,即可得出t的值;②當(dāng)△NBM∽△ABC時,由相似三角形的對應(yīng)邊成比例得出比例式,即可得出t的值;
(3)過M作MD⊥BC于點(diǎn)D,則MD∥AC,證出△BMD∽△BAC,得出比例式求出MD=t.四邊形ACNM的面積y=△ABC的面積-△BMN的面積,得出y是t的二次函數(shù),由二次函數(shù)的性質(zhì)即可得出結(jié)果.
解答 解:(1)∵在Rt△ABC中,∠ACB=90°,AC=5,∠BAC=60°,
∴∠B=30°,
∴AB=2AC=10,BC=5$\sqrt{3}$.
由題意知:BM=2t,CN=$\sqrt{3}$t,
∴BN=5$\sqrt{3}$-$\sqrt{3}$t,
∵BM=BN,
∴2t=5$\sqrt{3}$-$\sqrt{3}$t,
解得:t=10$\sqrt{3}$-15;
(2)分兩種情況:①當(dāng)△MBN∽△ABC時,
$\frac{MB}{AB}$=$\frac{BN}{BC}$,即$\frac{2t}{10}$=$\frac{5\sqrt{3}-\sqrt{3}t}{5\sqrt{3}}$,
解得:t=$\frac{5}{2}$;
②當(dāng)△NBM∽△ABC時,
$\frac{NB}{AB}$=$\frac{BM}{BC}$,即$\frac{5\sqrt{3}-\sqrt{3}t}{10}$=$\frac{2t}{5\sqrt{3}}$,
解得:t=$\frac{15}{7}$.
綜上所述:當(dāng)t=$\frac{5}{2}$或t=$\frac{15}{7}$時,△MBN與△ABC相似;
(3)如圖所示,過M作MD⊥BC于點(diǎn)D,則MD∥AC,
∴△BMD∽△BAC,
∴$\frac{MD}{AC}$=$\frac{BM}{AB}$,即$\frac{MD}{5}$=$\frac{2t}{10}$,
解得:MD=t.
設(shè)四邊形ACNM的面積為y,則
y=$\frac{1}{2}$×5×5$\sqrt{3}$-$\frac{1}{2}$(5$\sqrt{3}$-$\sqrt{3}$t)×t=$\frac{\sqrt{3}}{2}{t}^{2}$-$\frac{5}{2}\sqrt{3}$t+$\frac{25}{2}\sqrt{3}$=$\frac{\sqrt{3}}{2}$(t-$\frac{5}{2}$)2+$\frac{75}{8}$$\sqrt{3}$,
∴根據(jù)二次函數(shù)的性質(zhì)可知,當(dāng)t=$\frac{5}{2}$時,y的值最小,
此時ymin=$\frac{75}{8}\sqrt{3}$.
點(diǎn)評 本題是相似形綜合題,主要考查了相似三角形的判定與性質(zhì)、含30°角的直角三角形的性質(zhì)、三角形面積的計(jì)算的綜合應(yīng)用.證明三角形相似是解決問題的關(guān)鍵,解題時注意分類思想的運(yùn)用.在判定兩個三角形相似時,應(yīng)注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 2個 | B. | 3個 | C. | 4個 | D. | 無數(shù)個 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 62 | B. | 31 | C. | 28 | D. | 25 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com