【題目】如圖,在平面直角坐標(biāo)系中,正方形ABOC的兩直角邊分別在坐標(biāo)軸的正半軸上,分別過OB,OC的中點(diǎn)DEAE,AD的平行線,相交于點(diǎn)F, 已知OB=8

1)求證:四邊形AEFD為菱形

2)求四邊形AEFD的面積

3)若點(diǎn)Px軸正半軸上(異于點(diǎn)D),點(diǎn)Qy軸上,平面內(nèi)是否存在點(diǎn)G,使得以點(diǎn)A,P Q,G為頂點(diǎn)的四邊形與四邊形AEFD相似?若存在,求點(diǎn)P的坐標(biāo);若不存在,試說明理由

【答案】1)證明見解析;(248;(3)點(diǎn)P的坐標(biāo)為(12,0)(24,0),(,0),(,0),(16,0)

【解析】

1)結(jié)合正方形性質(zhì)求得△ACE≌△ABD,從而得到AE=AD,根據(jù)鄰邊相等的平行四邊形是菱形證明即可.
2)連接DE,求出ADE的面積即可解決問題.
3)首先證明AK=3DK,①當(dāng)AP為菱形的一邊,點(diǎn)Qx軸的上方,有圖2,圖3兩種情形.②當(dāng)AP為菱形的邊,點(diǎn)Qx軸的下方時,有圖4,圖5兩種情形.③如圖6中,當(dāng)AP為菱形的對角線時,有圖6一種情形.分別利用相似三角形的性質(zhì)求解即可.

1)∵DFAE,EFAD

∴四邊形AEFD是平行四邊形.

∵四邊形ABOC是正方形,

OBOCABAC,∠ACE=∠ABD90°.

∵點(diǎn)D,EOB,OC的中點(diǎn),

CEBD

∴△ACE≌△ABD(SAS),

AEAD,

是菱形

2)如圖1,連結(jié)DE

SABDAB·BD, SODEOD·OE

SAEDS正方形ABOC2 SABD SODE642824,

S菱形AEFD2SAED48

3)由圖1,連結(jié)AFDE相交于點(diǎn)K,易得ADK的兩直角邊之比為1:3

1)當(dāng)AP為菱形一邊時,點(diǎn)Qx軸上方,有圖2、圖3兩種情況:

如圖2AGPQ交于點(diǎn)H,

∵菱形PAQG∽菱形ADFE,

∴△APH的兩直角邊之比為1:3

過點(diǎn)HHNx軸于點(diǎn)N,交AC于點(diǎn)M,設(shè)AM=t

HNOQ,點(diǎn)HPQ的中點(diǎn),

∴點(diǎn)NOP中點(diǎn),

HNOPQ的中位線,

ONPN8t

又∵∠1=∠390°-∠2,∠PNH=∠AMH90°,

∴△HMA∽△PNH

,

HN3AM3t,

MHMNNH83t.

PN3MH

8t =3(83t),解得t2

OP2ON2(8t)12

∴點(diǎn)P的坐標(biāo)為(12,0)

如圖3APH的兩直角邊之比為1:3

過點(diǎn)HHIy軸于點(diǎn)I,過點(diǎn)PPNx軸交IH于點(diǎn)N,延長BAIN于點(diǎn)M

∵∠1=∠390°-∠2,∠AMH=∠PNH,

∴△AMH∽△HNP,

,設(shè)MHt,

PN3MH3t

AMBMAB3t8,

HN3AM3(3t8) 9t24

又∵HIOPQ的中位線,

OP2IH,

HIHN,

8t9t24,解得 t4

OP2HI2(8t)24,

∴點(diǎn)P的坐標(biāo)為(24,0)

2)當(dāng)AP為菱形一邊時,點(diǎn)Qx軸下方,有圖4、圖5兩種情況:

如圖4,PQH的兩直角邊之比為1:3

過點(diǎn)HHMy軸于點(diǎn)M,過點(diǎn)PPNHM于點(diǎn)N

MHQAC的中位線,

HM4

又∵∠1=∠390°-∠2,∠HMQ=∠N,

∴△HPN∽△QHM,

,則PN,

OM

設(shè)HNt,則MQ3t

MQMC,

3t8,解得t

OPMN4t

∴點(diǎn)P的坐標(biāo)為(,0)

如圖5PQH的兩直角邊之比為1:3

過點(diǎn)HHMx軸于點(diǎn)M,交AC于點(diǎn)I,過點(diǎn)QNQHM于點(diǎn)N

IHACQ的中位線,

CQ2HINQCI4

∵∠1=∠390°-∠2,∠PMH=∠QNH,

∴△PMH∽△HNQ,

,則MHNQ

設(shè)PMt,則HN3t

HNHI,

3t8+,解得 t

OPOMPMQNPM4t,

∴點(diǎn)P的坐標(biāo)為(,0)

3)當(dāng)AP為菱形對角線時,有圖6一種情況:

如圖6,PQH的兩直角邊之比為1:3

過點(diǎn)HHMy軸于點(diǎn)M,交AB于點(diǎn)I,過點(diǎn)PPNHM于點(diǎn)N

HIx軸,點(diǎn)HAP的中點(diǎn),

AIIB4,

PN4

∵∠1=∠390°-∠2,∠PNH=∠QMH90°,

∴△PNH∽△HMQ,

,則MH3PN12,HIMHMI4

HIABP的中位線,

BP2HI8,即OP16,

∴點(diǎn)P的坐標(biāo)為(160)

綜上所述,點(diǎn)P的坐標(biāo)為(120),(24,0),(,0),(,0),(16,0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的對角線ACBD相交于點(diǎn)O,AB=5AC=6,AC的平行線DEBC的延長線于點(diǎn)E,則四邊形ACED的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)OABC的兩條角平分線的交點(diǎn),過點(diǎn)OODBC,垂足為D,且OD4.若ABC的面積是34,則ABC的周長為( 。

A.8.5B.15C.17D.34

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線Cyx[ax1+x+1]a為任意實(shí)數(shù)).

1)無論a取何值,拋物線C恒過定點(diǎn)   ,   

2)當(dāng)a1時,設(shè)拋物線C在第一象限依次經(jīng)過的整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù)的點(diǎn))為A1,A2……An,將拋物線C沿著直線yxx≥0)平移,將平移后的拋物線記為C n,拋物線C n經(jīng)過點(diǎn)An,C n的頂點(diǎn)坐標(biāo)為Mnn為正整數(shù)且n12,,n,例如n1時,拋物線C1經(jīng)過點(diǎn)A1,C1的頂點(diǎn)坐標(biāo)為M1).

①拋物線C2的解析式為   ,頂點(diǎn)坐標(biāo)為   

②拋物線C1上是否存在點(diǎn)P,使得PM1A2M2?若存在,求出點(diǎn)P的坐標(biāo),并判斷四邊形PM1M2A2的形狀;若不存在,請說明理由.

③直接寫出Mn1Mn兩頂點(diǎn)間的距離:   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1是一個閉合時的夾子,圖2是該夾子的主視示意圖,夾子兩邊為AC,BD(點(diǎn)A與點(diǎn)B重合),點(diǎn)O是夾子轉(zhuǎn)軸位置,OEAC于點(diǎn)E,OFBD于點(diǎn)FOE=OF=1cm,AC=BD=6cm, CE=DF CE:AE=2:3.按圖示方式用手指按夾子,夾子兩邊繞點(diǎn)O轉(zhuǎn)動

(1)當(dāng)EF兩點(diǎn)的距離最大值時,以點(diǎn)AB,CD為頂點(diǎn)的四邊形的周長是_____ cm.

(2)當(dāng)夾子的開口最大(點(diǎn)C與點(diǎn)D重合)時,A,B兩點(diǎn)的距離為_____cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知二次函數(shù)圖象的頂點(diǎn)為A,與y軸交于點(diǎn)B,異于頂點(diǎn)A的點(diǎn)C(1n)在該函數(shù)圖象上.

1)當(dāng)m=5時,求n的值.

2)當(dāng)n=2時,若點(diǎn)A在第一象限內(nèi),結(jié)合圖象,求當(dāng)y時,自變量x的取值范圍.

3)作直線ACy軸相交于點(diǎn)D.當(dāng)點(diǎn)Bx軸上方,且在線段OD上時,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABD內(nèi)接于半徑為5的⊙O,連結(jié)AO并延長交BD于點(diǎn)M,交圓⊙O于點(diǎn)C,過點(diǎn)AAE//BD,交CD的延長線于點(diǎn)E,AB=AM.

(1)求證:ABMECA.

(2)當(dāng)CM=4OM時,求BM的長.

(3)當(dāng)CM=kOM時,設(shè)ADE的面積為, MCD的面積為,求的值(用含k的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線Ly=ax2+bx+cx軸交于A、B3,0)兩點(diǎn)(AB的左側(cè)),與y軸交于點(diǎn)C0,3),已知對稱軸x=1

1)求拋物線L的解析式;

2)將拋物線L向下平移h個單位長度,使平移后所得拋物線的頂點(diǎn)落在△OBC內(nèi)(包括△OBC的邊界),求h的取值范圍;

3)設(shè)點(diǎn)P是拋物線L上任一點(diǎn),點(diǎn)Q在直線lx=﹣3上,△PBQ能否成為以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若能,求出符合條件的點(diǎn)P的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線交坐標(biāo)軸于兩點(diǎn),拋物線經(jīng)過兩點(diǎn),且交軸于另一點(diǎn).點(diǎn)為第一象限內(nèi)拋物線上一動點(diǎn),過點(diǎn)于點(diǎn),交軸于點(diǎn)

1)求拋物線的解析式;

2)設(shè)點(diǎn)的橫坐標(biāo)為在點(diǎn)移動的過程中,存在求出此時的值;

3)在拋物線上取點(diǎn)在坐標(biāo)系內(nèi)取點(diǎn)問是否存在以為頂點(diǎn)且以為邊的矩形?如果存在,請直接寫出點(diǎn)的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案