【題目】如圖,已知點O為△ABC的兩條角平分線的交點,過點O作OD⊥BC,垂足為D,且OD=4.若△ABC的面積是34,則△ABC的周長為( 。
A.8.5B.15C.17D.34
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一次函數(shù)y=kx+b的圖象分別與x、y軸交于點B、A,與反比例函數(shù)的圖象分別交于點C、D,CE⊥x軸于點E,tan∠ABO=,OB=4,OE=2.
(1)求該反比例函數(shù)的解析式;
(2)求線段CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(10分)問題:如圖(1),在Rt△ACB中,∠ACB=90°,AC=CB,∠DCE=45°,試探究AD、DE、EB滿足的等量關系.
[探究發(fā)現(xiàn)]
小聰同學利用圖形變換,將△CAD繞點C逆時針旋轉90°得到△CBH,連接EH,由已知條件易得∠EBH=90°,∠ECH=∠ECB+∠BCH=∠ECB+∠ACD=45°.根據(jù)“邊角邊”,可證△CEH≌ ,得EH=ED.
在Rt△HBE中,由 定理,可得BH2+EB2=EH2,由BH=AD,可得AD、DE、EB之間的等量關系是 .
[實踐運用]
(1)如圖(2),在正方形ABCD中,△AEF的頂點E、F分別在BC、CD邊上,高AG與正方形的邊長相等,求∠EAF的度數(shù);
(2)在(1)條件下,連接BD,分別交AE、AF于點M、N,若BE=2,DF=3,BM=2,運用小聰同學探究的結論,求正方形的邊長及MN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖1,直線與x軸、y軸分別交于點A、C兩點,點B的橫坐標為2.
圖1 圖2
(1)求A、C兩點的坐標和拋物線的函數(shù)關系式;
(2)點D是直線AC上方拋物線上任意一點,P為線段AC上一點,且S△PCD=2S△PAD ,求點P的坐標;
(3)如圖2,另有一條直線y=-x與直線AC交于點M,N為線段OA上一點,∠AMN=∠AOM.點Q為x軸負半軸上一點,且點Q到直線MN和直線MO的距離相等,求點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點G是正方形ABCD對角線CA的延長線一點,對角線BD與AC交于點O,以線段AG為邊作一個正方形AEFG,連接EB、GD.
(1)求證:EB=GD;
(2)若AB=5,AG=2,求EB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】吉祥超市準備購進甲、乙兩種綠色袋裝食品共800袋.甲、乙兩種綠色袋裝食品的進價和售價如表.已知:用2000元購進甲種袋裝食品的數(shù)量與用1600元購進乙種袋裝食品的數(shù)量相同.
甲 | 乙 | |
進價(元/袋) | m | m﹣2 |
售價(元/袋) | 20 | 13 |
(1)求m的值;
(2)假如購進的甲、乙兩種綠色袋裝食品全部賣出,所獲總利潤不少于5200元,且不超過5280元,問該超市有幾種進貨方案?(利潤=售價﹣進價)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料:
小銘和小雨在學習過程中有如下一段對話:
小銘:“我知道一般當m≠n時,≠.可是我見到有這樣一個神奇的等式:
=(其中a,b為任意實數(shù),且b≠0).你相信它成立嗎?”
小雨:“我可以先給a,b取幾組特殊值驗證一下看看.”
完成下列任務:
(1)請選擇兩組你喜歡的、合適的a,b的值,分別代入閱讀材料中的等式,寫出代入后得到的具體等式并驗證它們是否成立(在相應方框內打勾);
① 當a= ,b= 時,等式 (□成立;□不成立);
② 當a= ,b= 時,等式 (□成立;□不成立).
(2)對于任意實數(shù)a,b(b≠0),通過計算說明=是否成立.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點A(,1)在射線OM上,點B(,3)在射線ON上,以AB為直角邊作Rt△ABA1,以BA1為直角邊作第二個Rt△BA1B1,以A1B1為直角邊作第三個Rt△A1B1A2,…,依此規(guī)律,得到Rt△B2018A2019B2019,則點B2019的縱坐標為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本小題6分)為了參加中考體育測試,甲,乙,丙三位同學進行足球傳球訓練。球從一個人
腳下隨機傳到另一個人腳下,且每位傳球人傳球給其余兩人的機會是均等的,由甲開始傳球,共傳三次。
(1)求請用樹狀圖列舉出三次傳球的所有可能情況;
(2)傳球三次后,球回到甲腳下的概率;
(3)三次傳球后,球回到甲腳下的概率大還是傳到乙腳下的概率大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com