【題目】如圖,ABD內(nèi)接于半徑為5的⊙O,連結(jié)AO并延長交BD于點(diǎn)M,交圓⊙O于點(diǎn)C,過點(diǎn)A作AE//BD,交CD的延長線于點(diǎn)E,AB=AM.
(1)求證:ABM∽ECA.
(2)當(dāng)CM=4OM時(shí),求BM的長.
(3)當(dāng)CM=kOM時(shí),設(shè)ADE的面積為, MCD的面積為,求的值(用含k的代數(shù)式表示).
【答案】(1)證明見解析;(2);(3)
【解析】
(1)利用同弧所對的圓周角相等,以及平行線的性質(zhì)得出角相等,再利用兩角對應(yīng)相等的兩個(gè)三角形相似解題.
(2)連接BC構(gòu)造直角三角形,再過B作BF⊥AC,利用所得到的直角三角形,結(jié)合勾股定理解題.
(3)過點(diǎn)M作出△MCD的高MG, 再由,得出線段間的比例關(guān)系,從而可得出結(jié)果.
解:(1)∵弧CD=弧CD,
∴.
∵,
∴.
∴
∵弧AD=弧AD
∴
∴
(2)連接BC,作,
∵半徑為5,
∴.
∵,
∴,.
∴.
由圖可知AC為直徑,,得.
,解得.
在中,,則.
∴.
在中,.
(3)當(dāng),即,
,
,
∵,
∴,
∴.
過M作,,(以AC為直徑),
可知,
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,雙曲線經(jīng)過的頂點(diǎn)和上的中點(diǎn),軸,點(diǎn)的坐標(biāo)為.則(1)點(diǎn)的坐標(biāo)為______.(2)的面積是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著互聯(lián)網(wǎng)的高速發(fā)展,人們的支付方式發(fā)生了巨大改變,某學(xué)習(xí)小組抽樣調(diào)查了春節(jié)期間某商場顧客的支付方式,主要有現(xiàn)金支付、銀聯(lián)卡支付和手機(jī)支付,調(diào)查得知使用這三種支付的人數(shù)比為,手機(jī)支付已成為市民購物便捷支付方式.手機(jī)支付主要有以下三種方式:~支付寶,~微信,~其他.現(xiàn)將使用手機(jī)支付方式人數(shù)的調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖.
(1)扇形統(tǒng)計(jì)圖中,________;請補(bǔ)全條形統(tǒng)計(jì)圖;
(2)若該商場春節(jié)期間共20000人購物,請估計(jì)用支付寶進(jìn)行支付的人數(shù).
(3)經(jīng)調(diào)查某天顧客現(xiàn)金支付、銀聯(lián)卡支付、手機(jī)支付每筆交易發(fā)生的平均金額分別為120元、260元、80元,求這天顧客每筆交易的平均金額.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形ABOC的兩直角邊分別在坐標(biāo)軸的正半軸上,分別過OB,OC的中點(diǎn)D,E作AE,AD的平行線,相交于點(diǎn)F, 已知OB=8.
(1)求證:四邊形AEFD為菱形.
(2)求四邊形AEFD的面積.
(3)若點(diǎn)P在x軸正半軸上(異于點(diǎn)D),點(diǎn)Q在y軸上,平面內(nèi)是否存在點(diǎn)G,使得以點(diǎn)A,P, Q,G為頂點(diǎn)的四邊形與四邊形AEFD相似?若存在,求點(diǎn)P的坐標(biāo);若不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在正方形ABCD中,對角線AC與BD相交于點(diǎn)O,AE,DF分別是∠OAD與∠ODC的平分線,AE的延長線與DF相交于點(diǎn)G,則下列結(jié)論:①AG⊥DF;②EF∥AB;③AB=AF;④AB=2EF.其中正確的結(jié)論是( 。
A.①②B.③④C.①②③D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知E、F分別是ABCD的邊BC,AD上的點(diǎn),且BE=DF.
(1)求證:四邊形AECF是平行四邊形;
(2)若四邊形AECF是菱形,且BC=8,∠BAC=90°,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AE交CD于點(diǎn)F,交BC的延長線于點(diǎn)E.
(1)求證:BE=CD;
(2)連接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC內(nèi)接于⊙O,且AB=AC,直徑AD交BC于點(diǎn)E,F是OE上的一點(diǎn),CFBD.
(1)求證:BE=CE;
(2)試判斷四邊形BFCD的形狀,并說明理由;
(3)若BC=6,AD=10,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓的直徑,P是半圓與直徑AB所圍成的圖形的外部的一定點(diǎn),D是直徑AB上一動點(diǎn),連接PD并延長,交半圓于點(diǎn)C,連接AC,BC.已知AB=6 cm,設(shè)A,D兩點(diǎn)之間的距離為x cm,A,C兩點(diǎn)之間的距離為y1 cm,B,C兩點(diǎn)之間的距離為y2 cm.
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對函數(shù)y1,y2隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.
下面是小明的探究過程,請補(bǔ)充完整:
(1)按照下表自變量x的值進(jìn)行取點(diǎn)、畫圖、測量,分別得到y1,y2與x的幾組對應(yīng)值;
(2)在同一平面直角坐標(biāo)系xOy中,描出補(bǔ)全后的表中各組數(shù)值所對應(yīng)的點(diǎn)(x,y1),
(x, y2),并畫出函數(shù)y1,y2的圖象;
(3)結(jié)合函數(shù)圖象,解決問題:當(dāng)△ABC有一個(gè)角的正弦值為時(shí),AD的長約為________cm.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com