【題目】一個批發(fā)商銷售成本為20元/千克的某產(chǎn)品,根據(jù)物價部門規(guī)定:該產(chǎn)品每千克售價不得超過90元,在銷售過程中發(fā)現(xiàn)的售量y(千克)與售價x(元/千克)滿足一次函數(shù)關系,對應關系如下表:
售價x(元/千克) | … | 50 | 60 | 70 | 80 | … |
銷售量y(千克) | … | 100 | 90 | 80 | 70 | … |
(1)求y與x的函數(shù)關系式;
(2)該批發(fā)商若想獲得4000元的利潤,應將售價定為多少元?
(3)該產(chǎn)品每千克售價為多少元時,批發(fā)商獲得的利潤w(元)最大?此時的最大利潤為多少元?
【答案】(1)y與x的函數(shù)關系式為y=-x+150;(2)該批發(fā)商若想獲得4000元的利潤,應將售價定為70元;(3)該產(chǎn)品每千克售價為85元時,批發(fā)商獲得的利潤w(元)最大,此時的最大利潤為4225元.
【解析】試題分析:(1)根據(jù)圖表中的各數(shù)可得出y與x成一次函數(shù)關系,從而結合圖表的數(shù)可得出y與x的關系式.
(2)根據(jù)想獲得4000元的利潤,列出方程求解即可;
(3)根據(jù)批發(fā)商獲得的總利潤w(元)=售量×每件利潤可表示出w與x之間的函數(shù)表達式,再利用二次函數(shù)的最值可得出利潤最大值.
解:(1)設y與x的函數(shù)關系式為y=kx+b(k≠0),根據(jù)題意得
,
解得.
故y與x的函數(shù)關系式為y=﹣x+150;
(2)根據(jù)題意得
(﹣x+150)(x﹣20)=4000,
解得x1=70,x2=100>90(不合題意,舍去).
故該批發(fā)商若想獲得4000元的利潤,應將售價定為70元;
(3)w與x的函數(shù)關系式為:
w=(﹣x+150)(x﹣20)
=﹣x2+170x﹣3000
=﹣(x﹣85)2+4225,
∵﹣1<0,
∴當x=85時,w值最大,w最大值是4225.
∴該產(chǎn)品每千克售價為85元時,批發(fā)商獲得的利潤w(元)最大,此時的最大利潤為4225元.
科目:初中數(shù)學 來源: 題型:
【題目】綜合與探究
如圖,在平面直角坐標系xOy中,拋物線W的函數(shù)表達式為y=﹣x2+2x+3,拋物線W與x軸交于A、B兩點(點A在點B的右側),與y軸交于點C,它的頂點為D,直線l經(jīng)過A、C兩點.
(1)求點A、B、C、D的坐標.
(2)將直線l向下平移m個單位,對應的直線為l′.
①若直線l′與x軸的正半軸交于點E,與y軸的正半軸交于點F,△AEF的面積為S,求S關于m的函數(shù)關系式,并寫出自變量m的取值范圍;
②求m的值為多少時,S的值最大?最大值為多少?
(3)若將拋物線W也向下平移m單位,再向右平移1個單位,使平移后得到的二次函數(shù)圖象的頂點P落在△AOC的內(nèi)部(不包括△AOC的邊界),請直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的高,tanB=cos∠DAC.
(1)求證:AC=BD;
(2)若sin C=,BC=12,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點在第一象限,且過點(0,1)和(-1,0).下列結論:①ab<0;②b2>4a;③0<a+b+c<2;④0<b<1;⑤當x>-1時,y>0.其中正確結論的個數(shù)是( )
A. 5個 B. 4個 C. 3個 D. 2個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校舉行“漢字聽寫”比賽,全體學生都參與,每名學生聽寫39個漢字,比賽結束后,學校隨機抽查了部分學生的聽寫結果,繪制成如下所示的統(tǒng)計表(不完整)和如圖所示的統(tǒng)計圖(不完整) .請根據(jù)題意解答下列問題.
組別 | 正確的個數(shù)x | 人數(shù) |
A | 10 | |
B | 15 | |
C | 25 | |
D | m | |
E | n |
(1)統(tǒng)計表中的m=__,n=___;
(2)請補全頻數(shù)分布直方圖:
(3)在扇形統(tǒng)計圖中,C組所對應扇形的圓心角的度數(shù)是______ ;
(4)已知該校共有1260名學生,如果聽寫漢字正確的個數(shù)少于24定為不合格,那么該校本次比賽不合格的學生人數(shù)大約是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩家工廠生產(chǎn)的辦公桌和辦公椅的質(zhì)量、價格一致, 每張辦公桌800元,每把椅子80元,甲、乙兩個廠家推出各自銷售的優(yōu)惠方案:甲廠家,買張桌子送三把椅子:乙廠家,桌子和椅子全部按原價的8折優(yōu)惠現(xiàn)某公司要購買3張辦公桌和若干把椅子,若購買的椅子數(shù)為x把() .
(1)分別用含x的式子表示購買甲、乙兩個廠家桌椅所需的金額:購買甲廠家的桌椅所需金額為_ ;購買乙廠家的桌椅所需金額為_
(2)該公司到哪家工廠購買更劃算?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:(1)(﹣1.1)+(﹣3.9);(2)(﹣9)﹣(﹣7);(3)4﹣(+3.85)﹣(﹣3)+(﹣3.15);(4)﹣|﹣1|﹣(+2)﹣(﹣2.75)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC各頂點的坐標分別為A(-2,6),B(-3,2),C(0,3),將△ABC先向右平移4個單位長度,再向上平移3個單位長度,得到△DEF.
(1)分別寫出△DEF各頂點的坐標;
(2)如果將△DEF看成是由△ABC經(jīng)過一次平移得到的,請指出這一平移的平移方向和平移距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com