【題目】已知點在數(shù)軸上對應(yīng)的數(shù)為,點對應(yīng)的數(shù)為,且G為線段上一點,兩點分別從點沿方向同時運動,設(shè)點的運動速度為點的運動速度為,運動時間為.

1點對應(yīng)的數(shù)為 點對應(yīng)的數(shù)為 ;

2)若,試求為多少時,兩點的距離為;

3)若,點為數(shù)軸上任意一點,且,請直接寫出的值.

【答案】1; ;(2;(3.

【解析】

1)根據(jù)平方與絕對值的和為0,可得平方、絕對值同時為0,可得答案;

2)分兩種情況討論:①,②分別列式計算即可;

3)也分兩種情況討論:①當(dāng)點H在點B的左側(cè)時,設(shè),列式計算即可;②當(dāng)點H在點B的右側(cè)時,直接列式計算即可;

1)∵,

,,

,

故答案為:;

2)∵,且,

解得:

解得:,

3)①當(dāng)點H在點B的左側(cè)時,如圖:

設(shè),

,

,,

,

,

,

②當(dāng)點H在點B的右側(cè)時,如圖:

,

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖中是拋物線形拱橋,P處有一照明燈,水面OA4m,從O、A兩處觀測P處,仰角分別為α、β,且tanα=,tanβ=,以O為原點,OA所在直線為x軸建立直角坐標系.若水面上升1m,水面寬為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,EBC的中點,連接AE,過點EEF⊥AEDC于點F,連接AF.設(shè)=k,下列結(jié)論:(1△ABE∽△ECF,(2AE平分∠BAF,(3)當(dāng)k=1時,△ABE∽△ADF,其中結(jié)論正確的是(  )

A1)(2)(3 B1)(3 C1)(2 D2)(3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以直線上點為端點作射線,使,將直角的直角頂點放在點.

1)若直角的邊在射線上(圖①),求的度數(shù);

2)將直角繞點按逆時針方向轉(zhuǎn)動,使得所在射線平分(圖②),說明所在射線是的平分線;

3)將直角繞點按逆時針方向轉(zhuǎn)動到某個位置時,恰好使得(圖③),求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】元旦期間,丹東新一百商城銷售兩種商品,種商品每件進價元,售價元;種商品每件售價元,利潤率為.

1)每件種商品利潤率為 ,種商品每件進價為 元;

2)由于熱銷,商城決定再購進上面的兩種商品共件(每件商品的進價不變),采購部預(yù)算共支出元,財務(wù)部算了一下,說:“如果你用這些錢買兩種商品,那么賬肯定算錯了!”請你用學(xué)過的方程知識解釋財務(wù)部為什么會這樣說?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在銳角ABC中,ABC=45°,高線AD、BE相交于點F.

(1)判斷BF與AC的數(shù)量關(guān)系并說明理由;

(2)如圖2,將ACD沿線段AD對折,點C落在BD上的點M,AM與BE相交于點N,當(dāng)DEAM時,判斷NE與AC的數(shù)量關(guān)系并說明理由.

【答案】(1)BF=AC,理由見解析;2NE=AC,理由見解析.

【解析】試題分析:(1)如圖1,證明△ADC≌△BDF(AAS),可得BF=AC;
(2)如圖2,由折疊得:MD=DC,先根據(jù)三角形中位線的推論可得:AE=EC,由線段垂直平分線的性質(zhì)得:AB=BC,則∠ABE=∠CBE,結(jié)合(1)得:△BDF≌△ADM,則∠DBF=∠MAD,最后證明∠ANE=∠NAE=45°,得AE=EN,所以EN=AC.

試題解析:

1BF=AC,理由是:

如圖1,ADBC,BEAC,

∴∠ADB=AEF=90°,

∵∠ABC=45°

∴△ABD是等腰直角三角形,

AD=BD

∵∠AFE=BFD,

∴∠DAC=EBC,

ADCBDF中,

,

∴△ADC≌△BDFAAS),

BF=AC

2NE=AC,理由是:

如圖2,由折疊得:MD=DC,

DEAM,

AE=EC,

BEAC

AB=BC,

∴∠ABE=CBE,

由(1)得:ADC≌△BDF,

∵△ADC≌△ADM,

∴△BDF≌△ADM,

∴∠DBF=MAD

∵∠DBA=BAD=45°,

∴∠DBA﹣DBF=BAD﹣MAD

即∠ABE=BAN,

∵∠ANE=ABE+BAN=2ABE,

NAE=2NAD=2CBE

∴∠ANE=NAE=45°,

AE=EN,

EN=AC

型】解答
結(jié)束】
19

【題目】某校學(xué)生會決定從三明學(xué)生會干事中選拔一名干事當(dāng)學(xué)生會主席,對甲、乙、丙三名候選人進行了筆試和面試,三人的測試成績?nèi)缦卤硭荆?/span>

測試項目

測試成績/分

筆試

75

80

90

面試

93

70

68

根據(jù)錄用程序,學(xué)校組織200名學(xué)生采用投票推薦的方式,對三人進行民主測評,三人得票率如扇形統(tǒng)計圖所示(沒有棄權(quán),每位同學(xué)只能推薦1人),每得1票記分

(1)分別計算三人民主評議的得分;

(2)根據(jù)實際需要,學(xué)校將筆試、面試、民主評議三項得分按3:3:4的比例確定個人成績,三人中誰會當(dāng)選學(xué)生會主席?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正比例函數(shù)y=2x與反比例函數(shù)y=(k>0)的圖象交于A、B兩點,且點A的橫坐標為4,

(1)求k的值;

(2)根據(jù)圖象直接寫出正比例函數(shù)值小于反比例函數(shù)值時x的取值范圍;

(3)過原點O的另一條直線l交雙曲線y=(k>0)于P、Q兩點(P點在第一象限),若由點A、P、B、Q為頂點組成的四邊形面積為224,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠A=90°,OBC邊上一點,以O為圓心的半圓與AB邊相切于點D,與ACBC邊分別交于點E、FG,連接OD,已知BD=2AE=3,tan∠BOD=

1)求⊙O的半徑OD

2)求證:AE⊙O的切線;

3)求圖中兩部分陰影面積的和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】AB在數(shù)軸上對應(yīng)的數(shù)分別為ab,且(a+52+|b4|0

1)求線段AB的長;

2)點C在數(shù)軸上所對應(yīng)的數(shù)為x,且x是方程x3x1的解,在線段BC上是否存在點D,使得AD+BDCD?若存在,請求出點D在數(shù)軸上所對應(yīng)的數(shù),若不存在,請說明理由;

3)如圖,PO1,點PAB的上方,且∠POB60°,點P繞著點O30/秒的速度在圓周上順時針旋轉(zhuǎn)一周停止,同時點Q沿線段AB自點A向點B運動,若P、Q兩點能相遇,求點Q的運動速度.

查看答案和解析>>

同步練習(xí)冊答案