【題目】如圖,矩形ABCD中,E是BC的中點,連接AE,過點E作EF⊥AE交DC于點F,連接AF.設=k,下列結論:(1)△ABE∽△ECF,(2)AE平分∠BAF,(3)當k=1時,△ABE∽△ADF,其中結論正確的是( 。
A.(1)(2)(3) B.(1)(3) C.(1)(2) D.(2)(3)
【答案】C
【解析】
試題分析:(1)∵四邊形ABCD是矩形,
∴∠B=∠C=90°,
∴∠BAE+∠AEB=90°,
∵EF⊥AE,
∴∠AEB+∠FEC=90°,
∴∠BAE=∠FEC,
∴△ABE∽△ECF;
故(1)正確;
(2)∵△ABE∽△ECF,
∴,
∵E是BC的中點,
即BE=EC,
∴,
在Rt△ABE中,tan∠BAE=,
在Rt△AEF中,tan∠EAF=,
∴tan∠BAE=tan∠EAF,
∴∠BAE=∠EAF,
∴AE平分∠BAF;
故(2)正確;
(3)∵當k=1時,即=1,
∴AB=AD,
∴四邊形ABCD是正方形,
∴∠B=∠D=90°,AB=BC=CD=AD,
∵△ABE∽△ECF,
∴,
∴CF=CD,
∴DF=CD,
∴AB:AD=1,BE:DF=2:3,
∴△ABE與△ADF不相似;
故(3)錯誤.
故選C.
科目:初中數學 來源: 題型:
【題目】如圖,在每個小正方形邊長為1的網格中,點A,B,C均在格點上.
(Ⅰ)AC的長度等于_____;
(Ⅱ)在圖中有一點P,若連接AP,PB,PC,滿足AP平分∠A,且PC=PB,請在如圖所示的網格中,用無刻度的直尺,畫出點P,并簡要說明點P的位置是如何找到的(不要求證明)_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖(1),已知菱形的邊長為,點在軸負半軸上,點在坐標原點,點的坐標為(,),拋物線頂點在邊上,并經過邊的中點.
(1)求這條拋物線的函數解析式;
(2)點關于直線的對稱點是,求點到點的最短距離;
(3)如圖(2)將菱形以每秒個單位長度的速度沿軸正方向勻速平移,過點作于點,交拋物線于點,連接、.設菱形平移的時間為秒(),問是否存在這樣的,使與相似?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將一副三角板的兩個銳角頂點重合,,,,分別是,的平分線.
(1)如圖①所示,當與重合時,則的大小為______.
(2)當繞著點旋轉至如圖②所示,當,則的大小為多少?
(3)當繞著點旋轉至如圖③所示,當時,求的大小.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點,,,,在同一條直線上,,為的中點,.
(1)圖中共有直線______條,線段______條,射線______條;
(2)求線段的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某快遞公司有甲、乙、丙三個機器人分配快件,甲單獨完成需要x小時,乙單獨完成需要y小時,丙單獨完成需要z小時.
(1)求甲單獨完成的時間是乙丙合作完成時間的幾倍?
(2)若甲單獨完成的時間是乙丙合作完成時間的a倍,乙單獨完成的時間是甲丙合作完成時間的b倍,丙單獨完成的時間是甲乙合作完成時間的c倍,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線y=kx2+(k﹣2)x﹣2(其中k>0).
(1)求該拋物線與x軸的交點及頂點的坐標(可以用含k的代數式表示);
(2)若記該拋物線頂點的坐標為P(m,n),直接寫出|n|的最小值;
(3)將該拋物線先向右平移個單位長度,再向上平移個單位長度,隨著k的變化,平移后的拋物線的頂點都在某個新函數的圖象上,求新函數的解析式(不要求寫自變量的取值范圍).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知點在數軸上對應的數為,點對應的數為,且G為線段上一點,兩點分別從點沿方向同時運動,設點的運動速度為點的運動速度為,運動時間為.
(1)點對應的數為 ,點對應的數為 ;
(2)若,試求為多少時,兩點的距離為;
(3)若,點為數軸上任意一點,且,請直接寫出的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com