【題目】如圖,在△ABC中,BC=AC=5,AB=8,CDAB邊的高,點Ax軸上,點By軸上,點C在第一象限,若A從原點出發(fā),沿x軸向右以每秒4個單位長的速度運動,則點B隨之沿y軸下滑,并帶動△ABC在平面內(nèi)滑動,設(shè)運動時間為t秒,當(dāng)B到達(dá)原點時停止運動.當(dāng)△ABC的邊與坐標(biāo)軸平行時,t_____________.

【答案】

【解析】分析:分兩種情況:①當(dāng)CAx軸時,根據(jù)兩角對應(yīng)相等的兩三角形相似證明CAD∽△ABO,得出,求出AO的值;②CBy軸時,同理,可求出AO的值.

詳解:∵BC=AC,CDAB,

DAB的中點,

AD=AB=4.

RtCAD中,CD==3,

分兩種情況:

①設(shè)AO=4t1時,CAx軸時,A垂足,如圖.

CAOA,

CAy軸,

∴∠CAD=ABO.

又∵∠CDA=AOB=90°,

RtCADRtABO,

,即

解得t1=;

②設(shè)AO=4t2時,CBy軸,B為切點,如圖.

同理可得,t2=

綜上可知,當(dāng)以點C為圓心,CA為半徑的圓與坐標(biāo)軸相切時,t的值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y= (x<0)的圖象經(jīng)過點A(﹣1,1),過點A作AB⊥y軸,垂足為B,在y軸的正半軸上取一點P(0,t),過點P作直線OA的垂線l,以直線l為對稱軸,點B經(jīng)軸對稱變換得到的點B′在此反比例函數(shù)的圖象上,則t的值是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,EF分別是邊BC、AD上的點,有下列條件:

AECF;②BEFD;③∠1=∠2;④AECF.

若要添加其中一個條件,使四邊形AECF一定是平行四邊形,則添加的條件可以是(   )

A. ①②③④ B. ①②③ C. ②③④ D. ①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】重慶八中七年級 16 班同學(xué)為了解2019年某小區(qū)家庭月均用水情況,進(jìn)行了一次社會實踐活動.他們隨機(jī)調(diào)查了該小區(qū)部分家庭,并將調(diào)查數(shù)據(jù)進(jìn)行如下整理,

請解答以下問題:

1)把上面的頻數(shù)分布表和頻數(shù)分布直方圖補(bǔ)充完整;

2)若重慶市準(zhǔn)備實施的階梯水價中,計劃對月用水量不超過 15 噸的家庭實施水價下浮政策.為此,該班同學(xué)隨機(jī)從這些用戶中抽取一戶進(jìn)行采訪.則抽到的采訪用戶屬于月用水量不超過 5 噸的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由太原開往運城的D5303次列車,途中有6個停車站,這次列車的不同票價最多有( )

A. 28 B. 15 C. 56 D. 30

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個頂點的坐標(biāo)分別為A(﹣3,5),B(﹣2,1),C(﹣1,3).

①若△ABC經(jīng)過平移后得到△A1B1C1 , 已知點C1的坐標(biāo)為(4,0),寫出頂點A1 , B1的坐標(biāo);
②若△ABC和△A2B2C2關(guān)于原點O成中心對稱圖形,寫出△A2B2C2的各頂點的坐標(biāo);
③將△ABC繞著點O按順時針方向旋轉(zhuǎn)90°得到△A3B3C3 , 寫出△A3B3C3的各頂點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為2,H在CD的延長線上,四邊形CEFH也為正方形,則△DBF的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的袋中裝有20個只有顏色不同的球,其中5個黃球,8個黑球,7個紅球.

(1)求從袋中摸出一個球是黃球的概率;

(2)現(xiàn)從袋中取出若干個黑球,攪勻后,使從袋中摸出一個黑球的概率是,求從袋中取出黑球的個數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖是用4個全等的長方形拼成的一個“回形”正方形,圖中陰影部分面積用2種方法表示可得一個等式,這個等式為_______

(2)(4xy)2=9,(4x+y)2=169,求xy的值.

查看答案和解析>>

同步練習(xí)冊答案