【題目】如圖,正方形ABCD的邊長為2,H在CD的延長線上,四邊形CEFH也為正方形,則△DBF的面積為 .
【答案】2
【解析】解:設正方形CEFH的邊長為a,根據題意得:
S△BDF=S正方形ABCD+S正方形CEFH﹣S△ABD﹣S△DHF﹣S△BEF
=4+a2﹣ ×4﹣ a(a﹣2)﹣ a(a+2)
=2+a2﹣ a2+a﹣ a2﹣a
=2.
所以答案是:2.
方法二:連接CF.易證BD∥CF,
∴S△BDF=S△BDC= S正方形ABCD=2.
【考點精析】根據題目的已知條件,利用三角形的面積和正方形的性質的相關知識可以得到問題的答案,需要掌握三角形的面積=1/2×底×高;正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形.
科目:初中數學 來源: 題型:
【題目】與在平面直角坐標系中的位置如圖所示.
(1)分別寫出各點的坐標:___________,_________,_______________.
(2)是由經過怎樣的平移變換得到的?答:___________________.
(3)若點是內部一點,則內部的對應點的坐標為___________.
(4)求的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,OABC是一張放在平面直角坐標系中的矩形紙片,O為原點,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=5,OC=4.
(1)在OC邊上取一點D,將紙片沿AD翻折,使點O落在BC邊上的點E處,則D點的坐標;E點的坐標 .
(2)如圖②,若AE上有一動點P(不與A、E重合)自A點沿AE方向向E點勻速運動,運動的速度為每秒1個單位長度,設運動的時間為t秒(0<t<5),過P點作ED的平行線交AD于點M,過點M作AE的平行線交DE于點N.求四邊形PMNE的面積S與時間t之間的函數關系式;t取何值時,S有最大值,最大值是多少?
(3)在(2)的條件下,當t為何值時,以A、M、E為頂點的三角形為等腰三角形,并求出相應時刻點M的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,BC=AC=5,AB=8,CD為AB邊的高,點A在x軸上,點B在y軸上,點C在第一象限,若A從原點出發(fā),沿x軸向右以每秒4個單位長的速度運動,則點B隨之沿y軸下滑,并帶動△ABC在平面內滑動,設運動時間為t秒,當B到達原點時停止運動.當△ABC的邊與坐標軸平行時,t=_____________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,P為反比例函數y= (k>0)在第一象限內圖象上的一點,過點P分別作x軸,y軸的垂線交一次函數y=﹣x﹣4的圖象于點A、B.若∠AOB=135°,則k的值是( )
A.2
B.4
C.6
D.8
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】自由轉動如圖所示的轉盤.下列事件中哪些是必然事件?那些是隨機事件?根據你的經驗,將這些事件的序號按發(fā)生的可能性從小到大的順序排列.
(1)轉盤停止后指針指向1;
(2)轉盤停止后指針指向10;
(3)轉盤停止后指針指向的是偶數;
(4)轉盤停止后指針指向的不是奇數就是偶數;
(5)轉盤停止后指針指向的數大于1.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在□ABCD中,對角線AC、BD相交于點O,AB⊥AC,AB=3cm,BC=5cm.點P從A點出發(fā)沿AD方向勻速運動,速度為1cm/s.連結PO并延長交BC于點Q,設運動時間為t(0<t<5).
(1)當t為何值時,四邊形ABQP是平行四邊形?
(2)設四邊形OQCD的面積為y(cm2),求y與t之間的函數關系式;
(3)是否存在某一時刻t,使點O在線段AP的垂直平分線上?若存在,求出t的值;若不存在,請說明理由.
備用圖
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校在開學期間,打算購置一批辦公桌和椅子,現在同一款式的辦公桌每張定價200元,椅子每張40元.國慶節(jié)期間,有兩個商店決定開展促銷活動,活動期間向客戶提供優(yōu)惠如下:
甲商店:買一張辦公桌送一張椅子;
乙商店:辦公桌和椅子都按定價的九折付款.
現在學校要購買20張辦公桌和張椅子().
(1)用含的代數式表示學校分別在這兩個商店購買這一批桌椅所需的費用;
(2)購買椅子多少張時,兩個商店的費用相等?
(3)現在學校要購買30張椅子,通過計算說明選擇在哪個商店購買較為合算.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com