【題目】將四根長度相等的細(xì)木條首尾相接,用釘子釘成四邊形ABCD,轉(zhuǎn)動(dòng)這個(gè)四邊形,使它形狀改變,當(dāng)∠B=90°時(shí),如圖1,測得AC=2,當(dāng)∠B=60°時(shí),如圖2,則BD=_________
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的對角線AC⊥AE,射線EB交射線DC于點(diǎn)F,連結(jié)AF,若AF=BF,AE=4,則BE的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在圖1,2,3中,已知□ABCD,∠ABC=120°,點(diǎn)E為線段BC上的動(dòng)點(diǎn),連接AE,以AE為邊向上作菱形AEFG,且∠EAG=120°.
(1)如圖1,當(dāng)點(diǎn)E與點(diǎn)B重合時(shí),∠CEF=______°;
(2)如圖2,連接AF.
①填空:∠FAD_______∠EAB(填“>”,“=”,“<”);
②求證:點(diǎn)F在∠ABC的平分線上;
(3)如圖3,連接EG,DG,并延長DG交BA的延長線于點(diǎn)H,當(dāng)四邊形AEGH是平行四邊形時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 黃石知名特產(chǎn)“黃石港餅”“白鴨牌松花皮蛋”“珍珠果米酒”一直以來享有美譽(yù),深受人們喜愛.端午節(jié)快到了,為了滿足市場需求,某公司組織20輛汽車裝運(yùn)港餅、皮蛋、米酒共120噸去外地銷售,按計(jì)劃20輛汽車都要裝滿,且每輛汽車只能裝運(yùn)同一類食品,根據(jù)下表提供的信息解答以下問題.
港餅 | 皮蛋 | 米酒 | |
每輛汽車載重量(噸) | 8 | 6 | 5 |
每噸食品獲利(萬元) | 0.2 | 0.4 | 0.6 |
(1)設(shè)裝運(yùn)港餅的車輛為x輛,裝運(yùn)皮蛋的車輛為y輛,求y與x之間的函數(shù)關(guān)系式;
(2)此次銷售獲利為W萬元,試求W關(guān)于x的函數(shù)關(guān)系式;
(3)如果裝運(yùn)每種食品的車輛都不少于2輛,那么怎樣安排車輛能使此次銷售獲利最大?并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“a2≥0”這個(gè)結(jié)論在數(shù)學(xué)中非常有用,有時(shí)我們需要將代數(shù)式配成完全平方式,例如:x2+4x+5=x2+4x+4+1=(x+2)2+1,∵(x+2)2≥0,∴(x+2)2+1≥1,∴x2+4x+5≥1.試?yán)?/span>“配方法”解決下列問題:
(1)填空:因?yàn)?/span>x2-4x+7=(x-_____)2+______,所以當(dāng)x=_____時(shí),代數(shù)式x2-4x+7有最_____(填“大”或“小”)值,這個(gè)最值為_______;
(2)比較代數(shù)式x2-2與6x-13的大。
(3)試求2x2-3x+2的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文具店第一次用1600元購進(jìn)了一批新型文具試銷,很快賣完,于是第二次又用5000元購進(jìn)了這款文具,但第二次的進(jìn)價(jià)是第一次進(jìn)價(jià)的1.25倍,購進(jìn)數(shù)量比第一次多300件.
(1)求該文具店第一次購進(jìn)這款文具的進(jìn)價(jià);
(2)已知該文具店將第一次購進(jìn)的這款文具按50%的利潤率定價(jià)銷售完后,第二次購進(jìn)的這款文具售價(jià)在原來售價(jià)的基礎(chǔ)上增加5a%,銷售了第二次購進(jìn)的這款文具的12a%,剩下的這款文具9折處理,銷售一空,結(jié)果該文具店前后兩次銷售這款文具共獲利3000元,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為6的正方形ABCD的一邊AB在線段MN上移動(dòng),連接MD,NC并延長交于點(diǎn)E,MN=18.
(1)當(dāng)AM=4時(shí),求CN長;
(2)若∠E=90°,求證AM=BN;
(3)△MNE能否為等腰三角形?若能,求出AM的長,若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com