【題目】如圖所示,PA、PB為⊙O的切線,M、N是PA、AB的中點,連接MN交⊙O點C,連接PC交⊙O于D,連接ND交PB于Q,求證:MNQP為菱形.
【答案】見解析
【解析】試題分析:連接OA,OB,OC,OD,OP. 由是的中點,根據(jù)三角形中位線的性質(zhì),可得MN∥BP.,又由PA、PB為的切線,可得AB⊥OP.可證得NM=MP,然后由射影定理與切割線定理證得O,C,D,N四點共圓,繼而證得
MP∥NQ,則可得四邊形MNQP是平行四邊形,證得四邊形MNQP是菱形.
試題解析:證明:連接OA,OB,OC,OD,OP.
∵AN=NB,AM=MP.
∴MN∥BP.
∵PA、PB為的切線,
∴AB⊥OP.
∴NM=MP,∠MNP=∠MPN,
在Rt△AOP中,由射影定理,得
由切割線定理,得
∴PNPO=PDPC,
∴O,C,D,N四點共圓,
∴∠PND=∠OCD,∠ONC=∠ODC,
∵OC=OD,
∴∠OCD=∠ODC,
∵∠MNP=∠ONC,
∴∠MNP=∠PND=∠MPN,
∴MP∥NQ,
∴四邊形MNQP是平行四邊形,
∴四邊形MNQP是菱形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線與x軸、y軸分別交于A,B兩點,以AB為邊在第二象限內(nèi)作正方形ABCD,則D點坐標是_______;在y軸上有一個動點M,當的周長值最小時,則這個最小值是_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)已知2a-1與a+5是m的平方根,求m的值;
(2)若的整數(shù)部分為,小數(shù)部分為,求的值;
(3)若與|b-|互為相反數(shù),解關于x的方程(2a+4)x2+b2+6=0.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線與x軸交于點A,與y軸交于點C.拋物線經(jīng)過A,C兩點,且與x軸交于另一點B(點B在點A右側(cè)).
(1)求拋物線的解析式及點B坐標;
(2)若點M是線段BC上的一動點,過點M的直線EF平行y軸交x軸于點F,交拋物線于點E.求ME長的最大值;
(3)試探究當ME取最大值時,在拋物線上、x軸下方是否存在點P,使以M,F(xiàn),B,P為頂點的四邊形是平行四邊形?若存在,請求出點P的坐標;若不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠BAD=130°,∠B=∠D=90°,點E,F分別是線段BC,DC上的動點.當△AEF的周長最小時,則∠EAF的度數(shù)為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在中,∠ABC=90°,∠BAC=30°,將繞點A順時針旋轉(zhuǎn)一定的角度α得到,點B、C的對應點分別是E、D.
(1)如圖1,當點E恰好在AC上時,求∠CDE的度數(shù);
(2)如圖2,若α=60°時,點F是邊AC中點,求證:DF=BE;
(3)如圖3,點B、C的坐標分別是(0,0),(0,2),點Q是線段AC上的一個動點,點M是線段AO上的一個動點,是否存在這樣的點Q、M使得為等腰三角形且為直角三角形?若存在,請直接寫出滿足條件的點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)在第一象限的圖象交于和B兩點,與x軸交于點C.
(1)求反比例函數(shù)的解析式及點C的坐標.
(2)求△OCA的面積
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,動點E從點A出發(fā),以每秒2個單位的速度沿A→D→A運動,動點G從點A出發(fā),以每秒1個單位的速度沿A→B運動,當有一個點到達終點時,另一點隨之也停止運動.過點G作FG⊥AB交AC于點F.設運動時間為t(單位:秒).以FG為一直角邊向右作等腰直角三角形FGH,△FGH與正方形ABCD重疊部分的面積為S.
(1)當t=1.5時,S=________;當t=3時,S=________.
(2)設DE=y1,AG=y2,在如圖所示的網(wǎng)格坐標系中,畫出y1與y2關于t的函數(shù)圖象.并求當t為何值時,四邊形DEGF是平行四邊形?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com